
i

ii

FOREWORD
All the praises and gratitude to Allah SWT for the chance and the strength to compile and finish this e-book

titled “Silverlight for Windows Phone: LEARN & PRACTICE”. It has been a enjoyable journey because

Windows Phone is Microsoft’s latest mobile platform that is fascinating for end users, and for developers as

well. I also like to express my gratitude to Ronald Rajagukguk, for his introduction to the community, and for

being an inspiration to keep learning, and always look for opportunities of self-improvement.

WHAT WE CAN LEARN

 Windows Phone Overview

 Using Windows Phone Development Tools

 Silverlight on Windows Phone

 Specific Features on Windows Phone

 Developing a Simple Windows Phone Application

TARGET READER

This e-book is written for those who want to get to know, use, and develop applications for Windows Phone,

Microsoft’s latest mobile platform. Of course, it would be naive to consider that this e-book covers the topic

about Windows Phone entirely, but it can undoubtedly give you a good basic to learn. In this e-book you will

not find topics that require advanced hardware supports such as multi-touch or FM, because this e-book is

written based on the available emulator.

The readers are assumed to at least understand the C# programming language. Readers are also expected to

have used Visual Studio. An understanding in Silverlight is also advisable.

Wise men say, “you bind knowledge by writing them”; therefore this e-book is dedicated to community

members, and hopefully will be of use for us all.

Enjoy! :)

Puja Pramudya

puja.pramudya@gmail.com

http://geeks.netindonesia.net/blogs/poedja

Microsoft Innovation Center

Bandung Institute of Technology

Indonesia

mailto:puja.pramudya@gmail.com
http://geeks.netindonesia.net/blogs/poedja

iii

CONTENTS

Foreword ... i

What We Can Learn ... ii

Target Reader ... ii

PART I OVERVIEW ... 1

Windows Phone ... 2

Silverlight and Windows Phone .. 3

Application Life Cycle ... 4

Security... 7

Development Requirements .. 9

System Requirements... 9

Windows Phone Emulator Requirements .. 9

PART II LEARN ... 10

You Had Me At “Hello World” .. 11

Navigations on Windows Phone ... 14

Navigating Between Pages ... 14

Passing Parameters Between Pages ... 16

Pivot and Panorama ... 18

Dealing with Page Orientations .. 26

Application Bar ... 30

Global Application Bar .. 30

Local Application Bar .. 32

Local Application Bar (Programmatic Approach) .. 34

Inserting Event Handler .. 35

Web Service Consumption ... 38

Access via Generated Class... 38

Using Standard HTTP Request .. 46

Working with Data ... 48

Using Isolated Storage .. 54

SIP Layout ... 60

Getting to Know Web Browser ... 64

Globalization & Localization ... 68

Globalization .. 68

iv

Localization... 71

Location Based System ... 79

Getting to Know Accelerometer ... 84

Bing Maps Control for Windows Phone ... 91

Registering Bing Maps Account .. 91

Using Bing Maps Control .. 92

PART III PRACTICE ... 96

#1 - Unit Converter ... 97

Preparing the Main Interface ... 97

Converting .. 101

Adding Culture List ... 104

Saving User Preferences ... 107

#2 – Stock Screen ... 110

Preparing Data for Company Stock Values ... 110

Preparing Company Stock List Page.. 119

Company Stock Detail Navigation .. 126

Preparing the Stock Transaction Signal Page .. 133

Creating Application Navigation using Application Bar .. 137

Stock Transaction Detail Page .. 138

Adding Company List .. 143

CLOSING .. iv

REFERENCES ... 5

PART I

OVERVIEW

WINDOWS PHONE

The year 2010 may be a milestone for Microsoft, and also mobile platform. In the computing industry, what

Microsoft had done is called reboot strategy. Microsoft refers to Windows Phone as ‘a revolutionary new

platform’. Microsoft rebuilt the whole thing from the beginning, with a fresher, cleaner user interface. Using

a design philosophy they call Metro, inspired by signs displayed in metro subways, Microsoft’s interface

shows distinctive characteristics, retrieves information easily, is intuitive, and uses user friendly symbols. Its

integration with service available in Microsoft’s cloud—Bing, Xbox Live, Push Notification, and Office to

name a few—and third party service has given a unique appeal, something Microsoft should have started

long ago.

From the development platform point of view, Windows Phone offers an interesting developing experience

for developers. A Windows Phone is bound to have 800x480 WGA or 480x320 HVGA resolution, touch

screen, GPS sensor, accelerometer, compass, light, camera, multimedia, GPU with DirectX9, and three

hardware buttons. As a developer, it is guaranteed that the whole specifications will be available in any

devices that support Windows Phone. Each and every device driver is created directly by Microsoft to ensure

consistency. To develop application over a Windows Phone platform, you have two popular and modern

options: Silverlight and XNA.

Silverlight is known to enable web developers to create stunning interfaces with the combination of controls,

text, vector graphic, media, animation, and data binding that can run on a number of platforms and

browsers. Meanwhile SNA is a gaming platform that supports 2D and 3D games meant for Xbox 360,

console, and PC.

Now, all that we need is the apps :)

3

SILVERLIGHT AND WINDOWS PHONE

In developing a Windows Phone application, we can select one of the two options, which are Silverlight and

XNA. Silverlight for Windows Phone is similar to Silverlight 3 that has been released for web developments.

Here are some important points regarding Silverlight in Windows Phone:

 Uses the same base class library

 Has been modified for performance

 Integrated with the hardware

 Integrated with the operating system

 Specific API for the device (accelerometer, GPS, etc.)

 Uses out-of-browser model

In the template provided for application development using Silverlight platform, there are five types of

project we can choose, depending on what we need:

 Windows Phone Application, which provides an empty page with no control at all

 Windows Phone List Application, which provides a sample scenario for master-detail data

application

 Windows Phone Panorama Application, which provides a sample usage of panorama navigation in

an application

 Windows Phone Pivot Application, which provides a sample usage of pivot navigation in an

application

 Windows Phone Class Library, to build components that can be reused in other projects

By default, a project will consist of these files:

Item Description

App.xaml/App.xaml.cs The application’s entry point which initializes resources

and layouts of the application

MainPage.xaml/MainPage.xaml.cs Defines a page with interface in the application

Background.png A graphic file which shows as the application’s icon in the

applications list. This icon can be replaced

SplashScreenImage.jpg A graphic file that is displayed when application is

launched. Splash screen is designed to give fast response

to users while the application’s initial page loads

Properties\AppManifest.xml Manifest file for application package generation purposes

Properties\AssemblyInfo.cs Assembly file that contains information regarding the

name and version of metadata attached to the assembly

that is generated

Properties\WMAppManifest.xml Manifest file with specific metadata regarding Windows

Phone application that defines icon name, initial page,

etc.

4

Another point to consider is that applications using Silverlight in Windows Phone fully apply navigation

techniques in Silverlight 3. Using frame container, navigation can naturally be easy to handle, and the

navigation to go back is integrated to the button on the hardware. No need to override the method :).

APPLICATION LIFE CYCLE

Model execution on a Windows Phone has a complete cycle, from when the application is launched until it is

deactivated. This execution model is designed to provide a fast, responsive experience at all times. This

causes the Windows Phone to only be able to run one application at a time. This is to prevent the device

from being slow or unresponsive due to the existence of background applications.

Several terminologies we should get familiar with in order to understand the aspects of execution model on

Windows Phone application

Term Description

Tombstoning A procedure in which the operating system deactivates

the application process as users exits the application.

Operating system preserves any information about the

application’s state. When the application is re-launched,

the operating system restarts the process and sends the

last known state from before the application was turned

off

Page State A state regarding the application page. It includes scroll

positions or text field contents. Modifications to this

state is done by overriding OnNavigatedTo or

OnNavigatedFrom methods

Application State An application’s condition in which there are no specific

associations to any page. This condition can be modified

using PhoneApplicationService class

Persistent Data Data shared by application. This data is stored and

retrieved from isolated storage. Application setting is one

example of persistent data

Transient State Transient data are those related to an instance of the

application. Transient data is stored in state dictionary

provided by PhoneApplicationService. An application in

tombstoned state will return to transient condition when

application is reactivated. An example of transient state

is web service query

Now let us move on to a short journey about application lifecycle in Windows Phone.

 Launching

A Windows Phone application is launched when it is called either because the user pressed the Back

button to said application, selected from application list, or from tiles in the main screen. Regardless

of the way it is called, an instance of the application will be created, and as the application starts

running, Launching event is started. The application preferably should not retrieve any data from

5

isolated storage. Since the event is generated before the application is active or displayed, doing

tasks that consume time, such as accessing isolated storage, may cause unwanted user experience

because it slows down the application’s launch time. Accessing isolated storage, or calling network

related actions, should be done asynchronously when application has been loaded. It is also not

advisable for the application to call transient state from its previous instance. When an application is

launched, it should look like an entirely new instance.

 Running

After launching event is handled, the application will start running. In this condition, the application

defines its conditions when the user, for example, navigates his way through the application’s pages.

The only activity that can happen is application incrementally stores data or settings in order to

reduce the amount of data to be stored as the application’s state changes. For applications using

small amount of data, this becomes ignorable.

 Closing

A sample scenario that starts closing event is when the user presses the device’s Back button on an

application’s initial page. Application has to store persistent data into isolated storage. It is not

necessary to store transient data, or data related only to one instance of application, because the

only way for a user to return to application after it is deactivated is by re-launching the application,

and as stated above, it will be an entirely new instance.

 Deactivating

When a running application is replaced by another, the previous one will be deactivated. There are

several scenarios as to how this event is started. One is by pressing the Start button or due to

timeout when the main screen is locked. An application can also be deactivated by the invocation of

a Launcher or Chooser—default applications that enables users to do common tasks on a mobile

device, such as taking pictures or sending emails. In those cases, the running application will start

Deactivated event and enter deactivating condition. Unlike when it is closed, an application that

launches Deactivating event will enter tombstoned condition. This means that the application is no

longer running, but the operating system records the application’s conditions and stores several data

related to it. It is very likely for users to return to the application, and when this happens, the

application enters reactivated condition.

In event Deactivated condition, an application should store information regarding the current

conditions using State property on PhoneApplicationService. Data stored into the dictionary are

transient data which will restore the application to its condition before it is deactivated. Since there

is no guarantee that applications that enter tombstoned condition will be reactivated, applications

should also store data into isolated storage. The whole actions has to be finished within 10 seconds,

otherwise the operating system will not terminate the application. For this reason, an application

that uses large amount of data is advised to store its data incrementally while the application is

running.

This is the list of actions that will cause an application to enter tombstoned condition:

 WebBrowserTask

 MarketplaceDetailTask

 MarketplaceHubTask

6

 SaveEmailAdressTask

 SavePhoneNumberTask

 SearchTask

 SmsComposeTask

The following actions will not automatically cause application to enter tombstoned condition, and

thus should be handled:

 PhotoChooserTask

 CameraCaptureTask

 MediaPlayerLauncer

 EmailAdrdressChooserTask

 PhoneNumberChooserTask

 Activating

After an application is deactivated and enters tombstoned condition, it is very likely to be

reactivated. Applications can be invoked as a new application instance from Start. Users may also

start application from another application, causing the tombstoned application to never be launched

again. When Launcher or Chooser is the cause of deactivation, users can finish tasks related to the

plug-in then return to the application’s tombstoned condition. When this happens, application will

be reactivated or Activated event will be called. Application should load data stored in

PhoneApplicationService dictionary to restore last known condition of the application. Similar to the

handling of Launching event, application should not access resources from network or isolated

storage to avoid slowing the process down.

This knowledge regarding execution model is absolutely necessary in order to preserve consistency and

provide a consistent user experience. Microsoft team has issued the best practice guide regarding execution

models in Windows Phone applications, as can be seen here. The following image elaborates the

application’s workflow for better understanding.

http://msdn.microsoft.com/en-us/library/ff817009%28v=VS.92%29.aspx

7

FIGURE 1 EXECUTION MODEL[4]

SECURITY

Security has become a certain issue in Windows Phone application development. This aspect directly affects

developers in building the application. There are several built-in features provided in Windows Phone, and

these affect what we should do and how we should code. If our application sends or receives sensitive

information through the internet we also have to secure the data. In this case Silverlight for Windows Phone

provides several classes that can be used.

Silverlight for Windows Phone is designed with several built-in features to support security aspects.

Windows Phone applications run in limited environment, Sandbox, thus limiting their access to filesystem or

8

other application files like any other .NET applications. This assures that applications will not affect operating

system or certain features in the device, such as camera or email. From the development point of view, this

means that developers only need to know how to call tasks related to the operating system or those

features through managed-code, because they cannot directly invoke the features. And this is where

Launchers and Choosers come in. Since applications may not access filesystem whilst several scenarios

require data storage, Silverlight provides isolated storage, in which we can store data. It is isolated because

an application may only access its own isolated storage. This very much simplifies codes regarding to data

storage in our application.

The feature mentioned above is already provided, and we only have to learn how to use it. On the other

side, Silverlight for Windows Phone also provides some tools for your application’s security. Sending

sensitive data through internet is one scenario where we want to secure the data. For this purpose, there

are a number of namespace that can be applied:

 System.Security.Principal gives information regarding user management and role management

 System.Security.Permissions exposes features on access to certain resources

 System.Security.Cryptography provides encryption and hash functions: AES, SHA1, SHA256, and

HMAC

9

DEVELOPMENT REQUIREMENTS

To begin development and learn how to build Windows Phone applications, we need Windows Phone

Developer Tools set. It includes Visual Studio 2010 Express for Windows Phone, Windows Phone Emulator,

XNA Game Studio, Expression Blend for Windows Phone, samples, and documentations. If you have already

installed Visual Studio Professional or later versions, an additional Add-In for Visual Studio will automatically

be installed. It has reached RTW version on September 16th 2010 and can be obtained here.

SYSTEM REQUIREMENTS

 Operating System: Windows 7 and Windows Vista

o Windows Vista (x86 and x64) ENU Service Pack 2 all editions other than Starter

o Windows 7 (x86 and x64) ENU – all editions other than Starter

 Hard disk with a minimum 3GB free space

 Recommend 2 GB of memory

 Graphic card that supports DirectX 10 with WDDM 1.1 driver

WINDOWS PHONE EMULATOR REQUIREMENTS

Running the emulator requires system configurations as in system requirements and more attention to these

points:

 .xap packet no more than 400MB

 No GPU usage

 Only supports VC-1 encoding, no support for blur and drop-shadow

 Data in isolated storage will be stored in emulator until activated

 Does not support multi touch simulation using mouse; only devices that actually have multi touch

feature may support the simulation

 Accelerometer, GPS, and camera cannot be used as in the real device

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=04704acf-a63a-4f97-952c-8b51b34b00ce&displaylang=en

PART II

LEARN

11

YOU HAD ME AT “HELLO WORLD”

Any programming journey begins by the time coders write their first line of hello world. The first lesson in

this Windows Phone e-book should be no different. To keep up with that tradition, here are the steps to

make your Windows Phone say hello:

1. Open Visual Studio Express for Windows Phone. Select File -> New Project. Choose the Visual C#

Silverlight for Windows Phone template. Select Windows Phone Application and name the project to

your liking.

2. After the project is created, the screen will show design and XAML markup codes. Design view shows

the phone interface which enables us to see how our program looks like during the development.

For those of you who are already familiar with Visual Studio, then the Tool Box panel, Solution

Explorer, and Properties pane will be around your main view.

3. Add a TextBox and a Button from the ToolBox. Note that we get the same experience in developing

Silverlight for web applications. We can easily alter the interface from the Properties pane.

12

When a Button is selected, we can see that the button is highlighted with a box outside the Button’s

border. The box indicates the Button’s touch area. This property is owned by every control. Change

the title text in XAML into “Hello World”.

4. Double-clicking the Button will show codes behind the active page. Add a function to change Title

into “Hello +” input from available TextBox.

5. Type this code for the Button’s event handler,

private void button1_Click(object sender, RoutedEventArgs e)

 {

 PageTitle.Text = "Hello " + textBox1.Text;

13

 }

6. Now we can test the simple application we have made. To deploy and launch the application we can

choose between running in an emulator or available Windows Phone device. Since there are not

many deployable Windows Phone yet, let’s use the emulator to run this simple application. Press F5

and see the result.

First-time deployment may take some time to process. However, the next deployments will take less

time, provided we don’t shut down the emulator. Type any text in the TextBox and press the button.

The title in the page will change according to the text inserted into TextBox. This is your first

Windows Phone application. Congratulations! :)

14

NAVIGATIONS ON WINDOWS PHONE

As explained in the previous part, navigations on Windows Phone use the same navigation introduced in

Silverlight 3. There are two important elements in the application level which are Frame and Page, and one

important element in device level.

FRAME
Frame is integrated with the whole layout of a Windows Phone application, and only one frame can be used

throughout the application. Several characteristics related to frame are the properties that can be used (full

screen, orientation), the ability to expose page areas in it and provide a location for system tray and

application bar. System tray is an area in which system status, such as battery, signal, etc. are displayed.

Application bar, on the other hand, provides space for frequently used tasks.

PAGE

A page fills the whole content of a frame. Main characteristics of a page are title and the ability to show

application bar specifically on certain pages.

BACK BUTTON

One important element that has become a standard in every Windows Phone device is a “Back” button. This

button is used to move one page backwards. With this button present, developers are advised not to add

any back button in their applications, unless absolutely necessary. By default the back button will also close

any pop-up menu displayed and bring users back to the previous screen.

NAVIGATING BETWEEN PAGES

Now we will learn how to navigate between pages in a Windows Phone application. Follow these steps:

1. Use the project we have created in the previous exercise. Add a page; in Solution Explorer, select

Add > New Item.

2. Select Windows Phone Portrait Page and rename the file as you like, in this example

SecondPage.xaml, then select Add.

3. Change the page title into “Page 2” from the XAML code

15

4. On MainPage.xaml.cs, change the codes in the Button’s click event handler into the following:

private void button1_Click(object sender, RoutedEventArgs e)

 {

 //Hello World

 // PageTitle.Text = "Hello " + textBox1.Text;

 NavigationService.Navigate(new Uri("/SecondPage.xaml",UriKind.Relative));

 }

Navigate is a static function from NavigationService which is used to navigate to desired pages using

target URI as the parameter.

5. Press F5 and see the result. Click on the Button to go forward to the next page.

16

6. We can use the Back button to return to the previous page. Additionally, if we want to go one page

backwards using custom button, we can do so by typing the following code into an event handler

private void button1_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.GoBack();

 }

In the next part, we will see how to do a parameter passing while navigating between pages.

PASSING PARAMETERS BETWEEN PAGES

1. Use the previously developed project. The scenario we will use in this exercise is passing a string

typed into the TextBox.

2. Type the following code into the Button’s event handler

private void button1_Click(object sender, RoutedEventArgs e)

 {

 //Hello World

 // PageTitle.Text = "Hello " + textBox1.Text;

 NavigationService.Navigate(new

Uri("/SecondPage.xaml?msg="+textBox1.Text,UriKind.Relative));

 }

3. On the second page, we will try to retrieve the sent string and show it on the page title. Type the

following code to do so:

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)

 {

 base.OnNavigatedTo(e);

 string msg = "";

 if (NavigationContext.QueryString.TryGetValue("msg", out msg))

 PageTitle.Text = msg;

 }

17

4. Press F5 and see the result. Type any string into TextBox then press Button. The title on the second

page will change according to the input text.

18

PIVOT AND PANORAMA

Navigation is an aspect that can be found very open for exploration, especially to build a better user

experience; and Microsoft seems to be concerned about the topic. In the latest release, developers have the

advantage with two complete look and feel experiences available, along with the built-in controls and

navigations. Let us get to know Pivot and Panorama.

PANORAMA

Panorama is designed to fit into the device’s main screen limitations. The panorama application

offers a unique way to show controls, data, and services on a horizontal canvas which size extends

beyond the device’s display. The dynamic view uses layer animations that give fun parallax effects.

Panorama can be used for application with non task-oriented page browsing and hub with a lot of

information.

FIGURE 2 PANORAMA VIEW [5]

Panorama view supports touch interaction for its navigations. We don’t need to re-implement. Among the

supported interactions are:

1. Horizontal pan (press and drag left or right)

2. Horizontal flick (press and slide quickly left or right)

3. Navigation hosted controls

19

Several guidelines to develop application using Panorama:

 Make sure to limit the number of sections used to a maximum of 4 sections. If the contents are too

tight or a lot of the application’s sections use hosted controls, then use less than 4 sections.

 Hide the parts where data is nonexistent.

 Sections can be extended beyond the display width by using Horizontal property.

 Use suitable background color or a wide picture background all through the Panorama control.

 The recommended size is 2000px (width) x 800px (height)

 Avoid drop-shadow effects.

 Make sure that title does not depend on the background.

 Avoid animations on Panorama titles.

Now let’s practice making an application using Panorama view on Windows Phone.

1. Create a new project from Windows Phone Panorama Application template.

Note:

If you want to continue from the previous exercises, right click on the project and select Add

Windows Phone Panorama Page. Or if you want to add Panorama control on existing page, drag and

drop from the toolbox to your page.

20

2. We will only use the template that is generated automatically while creating the application. Press

F5 and see the results. Do a flick to slide to next section.

3. Now let’s review the codes to understand application structures of a Panorama view.

 <!--Panorama control-->

 <controls:Panorama Title="my application">

 <controls:Panorama.Background>

 <ImageBrush ImageSource="PanoramaBackground.png"/>

 </controls:Panorama.Background>

 <!--Panorama item one-->

 <controls:PanoramaItem Header="first item">

 <!--Double line list with text wrapping-->

 <ListBox Margin="0,0,-12,0" ItemsSource="{Binding Items}">

21

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17" Width="432">

 <TextBlock Text="{Binding LineOne}"

TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock Text="{Binding LineTwo}"

TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource

PhoneTextSubtleStyle}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PanoramaItem>

 <!--Panorama item two-->

 <!--Use 'Orientation="Horizontal"' to enable a panel that lays out

horizontally-->

 </controls:Panorama>

The main control is Panorama, which consists of a number of PanoramaItem. Consider

PanoramaItem as a layout, like canvas or grid, where we can put any control in it. To add an item, all

we have to do is add a panorama item within the Panorama control’s range.

4. Add another PanoramaItem. We do the following in XAML code, adding the panorama item count on

the application to 3 items.

<controls:PanoramaItem Header="third item">

 <ListBox FontSize="{StaticResource PhoneFontSizeLarge}">

 <sys:String>This</sys:String>

 <sys:String>item</sys:String>

 <sys:String>has</sys:String>

 <sys:String>a</sys:String>

 <sys:String>short</sys:String>

 <sys:String>list</sys:String>

 <sys:String>of</sys:String>

 <sys:String>strings</sys:String>

 <sys:String>that</sys:String>

 <sys:String>you</sys:String>

 <sys:String>can</sys:String>

 <sys:String>scroll</sys:String>

 <sys:String>up</sys:String>

 <sys:String>and</sys:String>

 <sys:String>down</sys:String>

 <sys:String>and</sys:String>

 <sys:String>back</sys:String>

 <sys:String>again.</sys:String>

 </ListBox>

 </controls:PanoramaItem>

Don’t forget to add this reference:

xmlns:sys="clr-namespace:System;assembly=mscorlib"

22

5. Press F5 and see the result. Adding items on Panorama is an easy matter because the project

template has already given the big picture as how to use the control.

PIVOT

Pivot is designed to show a number of data and enable selections, and view items based on a certain

category. Pivot is used to manage application views that have several layouts or pages with built-in

navigations that support, such as:

1. Horizontal pan (press and drag left or right)

2. Horizontal flick (press and slide quickly left or right)

3. Navigation hosted controls

A sample of pivot implementation is the following figure:

FIGURE 3 PIVOT VIEW [6]

23

Some best practices that can be put into account in developing application using Pivot controls are:

 Reduce the number of pages in Pivot control for performance reasons.

 Boost application performance by displaying data on-demand as opposed to loading all of them at

once in the beginning.

 Make sure that each item displayed to users is of the same type.

 Pivot control should only be used if it suits the desired user experience.

Now let us learn how to use Pivot control in an application.

1. Create a new Windows Phone Pivot Application.

Note:

To continue from the previous exercise, right click on the project and select Add Windows Phone

Pivot Page. Or if you want to add Pivot control on existing page, drag and drop from the toolbox to

your page.

24

2. We will only use the template that is generated automatically while creating the application. Press

F5 and see the results.

3. Now let’s review the code in the main page. This is what it looks like:

<!--Pivot Control-->

 <controls:Pivot Title="MY APPLICATION">

 <!--Pivot item one-->

 <controls:PivotItem Header="first">

25

 <!--Double line list with text wrapping-->

 <ListBox x:Name="FirstListBox" Margin="0,0,-12,0"

ItemsSource="{Binding Items}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17" Width="432">

 <TextBlock Text="{Binding LineOne}"

TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock Text="{Binding LineTwo}"

TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource

PhoneTextSubtleStyle}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

 ...

 <!--Pivot item two-->

 </controls:Pivot>

 </Grid>

Examine that it is basically similar to Panorama View’s schematics. In Pivot control there is one main

container which includes several PivotItem. PivotItem can be used as containers equal to other

containers such as grid or canvas in which we can place other controls.

4. To add a new item, here is the example:

<controls:PivotItem Header="third">>

 <Grid>

 <ListBox FontSize="{StaticResource PhoneFontSizeLarge}">

 <sys:String>This</sys:String>

 <sys:String>item</sys:String>

 <sys:String>has</sys:String>

 <sys:String>a</sys:String>

 <sys:String>short</sys:String>

 <sys:String>list</sys:String>

 <sys:String>of</sys:String>

 <sys:String>strings</sys:String>

 <sys:String>that</sys:String>

 <sys:String>you</sys:String>

 <sys:String>can</sys:String>

 <sys:String>scroll</sys:String>

 <sys:String>up</sys:String>

 <sys:String>and</sys:String>

 <sys:String>down</sys:String>

 <sys:String>and</sys:String>

 <sys:String>back</sys:String>

 <sys:String>again.</sys:String>

 </ListBox>

 </Grid>

 </controls:PivotItem>

26

Don’t forget to add the following reference in the class declaration:

xmlns:sys="clr-namespace:System;assembly=mscorlib"

5. Press F5 for results.

DEALING WITH PAGE ORIENTATIONS

In this part, we will learn how to handle switching between page orientations based on the device's position.

There are two types of page orientation: portrait or landscape. Let us follow the steps below:

1. Create a new project or use any previously created project. Insert a new page; on Solution

Explorer select Add, then New Item.

2. Select Windows Phone Portrait Page and rename the file to your liking, in this example,

Orientation.xaml, then select Add.

27

3. Insert a video file into your project and set its Build Action property as “Resource”.

4. Add a MediaElement control and place it inside content grid. Then set the source property to

refer to the previously added video file.

<phone:PhoneApplicationPage

 x:Class="BukuWinPhone7.Orientation"

 >

 <!--LayoutRoot contains the root grid where all other page content is

placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">

 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"

Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="page name" Margin="-3,-

8,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentGrid" Grid.Row="1">

 <MediaElement Stretch="UniformToFill" Source="inaictaV3.wmv"/>

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

28

5. In order to make the page support both portrait and landscape orientation, insert the following

code into the page's PhoneApplicationPage definition.

<phone:PhoneApplicationPage

 x:Class="BukuWinPhone7.Orientation"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-

namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-

namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"

 shell:SystemTray.IsVisible="True">

6. Now set Orientation.xaml as the application's initial page by changing the property of

WMAppManifest manifest file.

On the Task section, change the value of NavigationPage into Orientation.xaml

</Capabilities>

 <Tasks>

 <DefaultTask Name ="_default" NavigationPage="Orientation.xaml"/>

 </Tasks>

 <Tokens>

7. Then on the Orientation.xaml page source code, add an event handler to handle the page's

orientation switch. Type in the code below:

 public Orientation()

 {

 InitializeComponent();

29

 this.OrientationChanged += new

EventHandler<OrientationChangedEventArgs>(Orientation_OrientationChanged);

 }

 void Orientation_OrientationChanged(object sender, OrientationChangedEventArgs

e)

 {

 if (e.Orientation == PageOrientation.Landscape ||

 e.Orientation == PageOrientation.LandscapeLeft ||

 e.Orientation == PageOrientation.LandscapeRight)

 {

 TitlePanel.Visibility = System.Windows.Visibility.Collapsed;

 ContentGrid.SetValue(Grid.RowSpanProperty, 2);

 ContentGrid.SetValue(Grid.RowProperty, 0);

 }

 else

 {

 TitlePanel.Visibility = System.Windows.Visibility.Visible;

 ContentGrid.SetValue(Grid.RowSpanProperty, 1);

 ContentGrid.SetValue(Grid.RowProperty, 1);

 }

 }

8. Press F5 and change the emulator's orientation by pressing the orientation button on the top

right corner of the emulator. When the orientation changes to landscape, the video will be

shown in full screen mode and the page title will disappear.

The handling of page orientation alteration can increase the Window Phone application's user

experience. It is of course your option to develop an application that can adapt to the way users hold

their devices.

30

APPLICATION BAR

Application bar is a control system that can be used to build a toolbar on a Windows Phone application.

Application bar can be considered as the main option to develop a fast and consistent navigation. There are

two types of application bar that we can use, icon button based and text menu based. Both types can also be

combined. Icon bars are usually used for main, frequently used activities. Application bar can be defined for

the whole application (global) or only on certain pages (local).

According to best practices written in MSDN, there are a couple things to be considered:

 If a task can be represented clearly using an icon, then use icon button. Otherwise, use text

menu.

 Use application bar to make sure system menus are consistent with the user experience in

every applications on the device.

 The recommended opacity are 0 (not shown, content page fills the display screen), 0.5, and

1 (shows on the screen).

To use icon button, things to be considered are:

 Use images with white foreground and alpha channel transparency.

 No need to manually add a circle on the icon border, because it is automatically added.

 Use a 48 x 48 image with a main icon sized 26 x 26 placed in the center of it.

 Do not use icon button to navigate back, because the hardware has already provided it.

 Use icon buttons for important tasks in the application.

 Icon samples can be downloaded here: Microsoft Download Center

 Avoid using more than 5 icon buttons.

GLOBAL APPLICATION BAR

If you want an application with many different pages (XAML files) that has only one application bar for all or

most pages, then global application bar is the perfect choice. To add a global application bar, what we have

to do is add the application bar's definition in App.xaml. Don't forget to add a unique key in resource

application bar so that it can be used in other XAML files.

Now let's start making our first application bar.

1. You can continue from the previous projects or make a new one. In this example I will use a

previously made project.

2. Open the App.xaml file, add the following code:

<Application

 x:Class="BukuWinPhone7.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-

namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

http://www.microsoft.com/downloads/details.aspx?FamilyID=369b20f7-9d30-4cff-8a1b-f80901b2da93&displaylang=en

31

 <!--Application Resources-->

 <Application.Resources>

 <shell:ApplicationBar x:Name="globalApplicationBar"

x:Key="globalApplicationBar" Opacity="0.7">

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem Text="Home" />

 <shell:ApplicationBarMenuItem Text="Help" />

 <shell:ApplicationBarMenuItem Text="About" />

 </shell:ApplicationBar.MenuItems>

 </shell:ApplicationBar>

 </Application.Resources>

In the above example, we will add three menus on the application bar. Next, the pages

which will use the application bar can refer to the previously defined key.

3. Open the pages to which the application bar will be added, and type the code below on each

page:

<phone:PhoneApplicationPage

 x:Class="BukuWinPhone7.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-

namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 SupportedOrientations="Portrait" Orientation="Portrait"

 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"

 shell:SystemTray.IsVisible="True"

 ApplicationBar="{StaticResource globalApplicationBar}">

4. Press F5 for results.

32

For the pages in the application (in this example, MainPage.xaml and SecondPage.xaml) to which

the application bar's definition has been added, a menu list will be visible on the bottom of the main

screen. The next section will explain the use of application bar in only one certain page.

LOCAL APPLICATION BAR

Creating a local application bar can be done in two ways: using codes or XAML. Make sure that the

XAML page doesn't already have a global application bar declaration. In this example we will use

MainPage.xaml file again.

1. Open your XAML page and add the code below under the root container:

 <phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar x:Name="globalApplicationBar"

x:Key="globalApplicationBar" Opacity="0.7">

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem Text="Home" />

 <shell:ApplicationBarMenuItem Text="Profile" />

 <shell:ApplicationBarMenuItem Text="Help" />

<shell:ApplicationBarMenuItem Text="About" />

 </shell:ApplicationBar.MenuItems>

 </shell:ApplicationBar>

 </phone:PhoneApplicationPage.ApplicationBar>

2. Press F5 for results. In this example, you can see the difference between the application bar in

MainPage.xaml and the one in SecondPage.xaml.

3. We used menu item in the previous example, now let's try using icon for our application bar. We

should prepare the required icons before starting. Icons can be downloaded from Microsoft

Download Center.

http://www.microsoft.com/downloads/details.aspx?FamilyID=369b20f7-9d30-4cff-8a1b-f80901b2da93&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=369b20f7-9d30-4cff-8a1b-f80901b2da93&displaylang=en

33

4. Add a couple of icons into the project. Right click on the project, select Add Existing Item. Set

Build Action property of the images to content.

5. Change the application bar codes into the following:

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar x:Name="globalApplicationBar"

IsMenuEnabled="True" Opacity="0.7">

 <shell:ApplicationBarIconButton Text="Add"

IconUri="appbar.add.rest.png"/>

 <shell:ApplicationBarIconButton Text="Message"

IconUri="appbar.feature.email.rest.png"/>

 <shell:ApplicationBarIconButton Text="Delete"

IconUri="appbar.delete.rest.png"/>

 </shell:ApplicationBar>

 </phone:PhoneApplicationPage.ApplicationBar>

34

6. Press F5 and see the results. Now the application bar consisting of three buttons is ready to use.

LOCAL APPLICATION BAR (PROGRAMMATIC APPROACH)

In this section we will see how application bar can be created programmatically with codes instead of XAML

file declaration. Follow the steps below:

1. Make sure that the page doesn't already have either global or local application bar defined.

2. Add a reference to the following dll
using Microsoft.Phone.Shell;

3. Add the following code in the code-behind file:

public MainPage()

 {

 InitializeComponent();

 ApplicationBar appBar = new ApplicationBar();

 appBar.IsMenuEnabled = true;

 appBar.Buttons.Add(new ApplicationBarIconButton(){ Text="Add", IconUri=new

Uri("appbar.add.rest.png",UriKind.Relative)});

 appBar.Buttons.Add(new ApplicationBarIconButton() { Text = "Message",

IconUri = new Uri("appbar.feature.email.rest.png", UriKind.Relative) });

 appBar.Buttons.Add(new ApplicationBarIconButton() { Text = "Delete",

IconUri = new Uri("appbar.delete.rest.png", UriKind.Relative) });

 this.ApplicationBar = appBar;

 }

35

4. Press F5 for results.

Exactly the same, aren't they? :)

INSERTING EVENT HANDLER

To implement functionality into application bar items, we need to assign a click event for each item

(regardless icon based or menu based). This can be done by using XAML or code. We can add a click event on

XAML by declaring a function inside the item’s property.

For the exercise we’ve done in creating icon bar, we only have to add the following declaration:

 <phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar x:Name="globalApplicationBar" IsMenuEnabled="True"

Opacity="0.7">

 <shell:ApplicationBarIconButton Text="Add"

Click="ApplicationBarIconButton_Click" IconUri="appbar.add.rest.png"/>

 <shell:ApplicationBarIconButton Text="Message"

IconUri="appbar.feature.email.rest.png"/>

 <shell:ApplicationBarIconButton Text="Delete"

IconUri="appbar.delete.rest.png"/>

 </shell:ApplicationBar>

 </phone:PhoneApplicationPage.ApplicationBar>

36

Or if you want it done programmatically, here is the code:

...

InitializeComponent();

 ApplicationBar appBar = new ApplicationBar();

 appBar.IsMenuEnabled = true;

 ApplicationBarIconButton appIcon = new ApplicationBarIconButton() { Text =

"Add", IconUri = new Uri("appbar.add.rest.png", UriKind.Relative) };

 appIcon.Click += new EventHandler(ApplicationBarIconButton_Click);

 appBar.Buttons.Add(appIcon);

 appBar.Buttons.Add(new ApplicationBarIconButton() { Text = "Message",

IconUri = new Uri("appbar.feature.email.rest.png", UriKind.Relative) });

 appBar.Buttons.Add(new ApplicationBarIconButton() { Text = "Delete",

IconUri = new Uri("appbar.delete.rest.png", UriKind.Relative) });

 this.ApplicationBar = appBar;

....

After the declaration, add the desired functionality inside the method (in this example it’s

ApplicationBarIconButton_Click). To give an illustration, the following code will show a message

box on button clicked.

 private void ApplicationBarIconButton_Click(object sender, EventArgs e)

 {

 //add your functionality

 MessageBox.Show((sender as ApplicationBarIconButton).Text);

 }

Press F5 for results. When icon button on application bar is pressed, a message box will appear with

the icon text as its content.

37

38

WEB SERVICE CONSUMPTION

Web service has become a standard when it comes to using a predefined web function in our application. In

this section we will learn how to consume web service on Windows Phone. Web services consumable by

Windows Phone can be in the form of SOAP (built in WCF or other technologies), plain HTTP, or REST.

Explanations regarding the said terms will not be discussed here; if you are not familiar with the terms you

can look it up in your preferred search engine.

Windows Phone applications can access these web services either directly or through a proxy class that is

automatically generated from metadata attached to a service. A service can be in a form of user defined

service that you place in your server, or a third party server, for example Facebook, Twitter, and other

services. Silverlight can work with many different data format, such as XML, JSON, RSS, or ATOM, and data

access can be done under numerous scenarios, such as serialization, LINQ to XML, LINQ to JSON, or

syndication. It has unlimited combinations, and can be implemented based on your need.

ACCESS VIA GENERATED CLASS

Accessing a service through a proxy class generated from metadata can improve development speed. This

section will discuss an example of web service access using .NET technology with auto-generated proxy class.

CREATING WEB SERVICES

1. Run a Visual Studio program that support Web Application project creation (in this case I use Visual

Studio 2010 Web Developer Express), then create a new Web ASP.NET Web Application project.

39

2. On the Solution Explorer window, add a web service file by right clicking on Project, then select Add >

Add New Item.

3. Select Web Service, then click Add.

40

4. We will only use the automatically generated function, which is a web service method that returns a

“Hello World” string. Further explanations regarding web service will not be discussed, and we will focus

to the Windows Phone access aspect.

5. Right click on the web service file and select View in Browser to test the function.

41

6. Your sample web service is ready for consumption. Do not turn off your browser.

ADDING WEB SERVICE REFERENCE

1. Open your Windows Phone project. On the Solution Explorer windows, right click on References,

then select Add Service Reference.

42

2. Copy and paste the access address for the web service that we created. This address can be

retrieved from the URL address on the browser. Click Go.

3. If the web service is found and accessible, a list of services and available operations will be

displayed. Give a namespace per your need then click OK.

43

4. If the addition is successful, on the Solution Explorer window we can see a configuration file and

a reference file for the web service we created.

CONSUMING WEB SERVICE

To consume a web service, we will create a new page so that the MainPage.xaml will not be overcrowded.

1. Right click on the project, Add New Item and select Windows Phone Portrait Page. Rename the file

as you wish, in this example WebService.xaml, then click Add.

44

2. Insert a Button and a TextBox. The scenario is that when the button is pressed, we will call for a web

service via an auto-generated proxy class.

3. Double-click on the button to add event handler. Type in the following code:

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 ServiceReference1.WebService1SoapClient proxy = new

ServiceReference1.WebService1SoapClient();

 proxy.HelloWorldCompleted += new

EventHandler<ServiceReference1.HelloWorldCompletedEventArgs>(proxy_HelloWorldCompleted

);

 proxy.HelloWorldAsync();

 }

 void proxy_HelloWorldCompleted(object sender,

ServiceReference1.HelloWorldCompletedEventArgs e)

 {

 if (e.Error == null)

 {

 textBlock1.Text = e.Result;

 }

 }

First we initialize proxy from the service. Define handler when request is done, then call the function

that will be used. On the above example, when the web service request is done, the content of the

TextBox will become “HelloWorld”.

45

4. Now set Orientation.xaml as the initial page for the application by changing the property on

WMAppManifest manifest file.

On Task section, change the value of NavigationPage into WebService.xaml

</Capabilities>

 <Tasks>

 <DefaultTask Name ="_default" NavigationPage="WebService.xaml"/>

 </Tasks>

 <Tokens>

5. Press F5 to see results.

Note:

Don’t forget to set this page as the first page your application goes to if you continue from the

previous project. Learn how to do so here.

46

USING STANDARD HTTP REQUEST

In this section we will see how to consume a service in form of plain HTTP or RESTful. Silverlight and

Windows Phone SDK have a System.Net standard package to send request through ftp and http. The

scenario used in this case is to consume a real live service, which is service from a website that provides

weather information.

This below is the URL for the service with <city_name> as input parameter.

http://www.google.com/ig/api?weather=jakarta

1. If you are still using the project from the previous section, let’s add a little modification on the

WebService.xaml file. If you are new to this, then create a new file by following these steps.

2. Insert the code below into the button’s event handler

private void button1_Click(object sender, RoutedEventArgs e)

 {

 //ServiceReference1.WebService1SoapClient proxy = new

ServiceReference1.WebService1SoapClient();

 //proxy.HelloWorldCompleted += new

EventHandler<ServiceReference1.HelloWorldCompletedEventArgs>(proxy_HelloWorldCompleted

);

 //proxy.HelloWorldAsync();

 WebClient wc = new WebClient();

 wc.DownloadStringAsync(new

Uri("http://www.google.com/ig/api?weather=jakarta"));

http://www.google.com/ig/api?weather=jakarta

47

 wc.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);

 }

 void wc_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

 {

 if (e.Error==null)

 {

 textBlock1.Text = e.Result;

 }

 }

There are two things done here. First, create a request by entering a URL address in WebClient class.

Request will later be done asynchronously so that it will not disturb the application’s responsiveness.

The second part is what to do after the request is done. In the above example, the result retrieved

from the request is written into a TextBlock.

3. Press F5 and see the results. Press button to call the service.

Download speed will be very dependent to your PC connection. The same thing applies in the real device.

You can see that the service data can be retrieved successfully. Data can then be processed further before

being displayed to users.

48

WORKING WITH DATA

Windows Phone which uses Silverlight as a development platform surely inherits the beauty of interacting

with data using DataBinding. Binding data to UI Control means that any alteration we do in UI will cause a

change in the data bound to it and vice versa. DataBinding makes it easier for us to display data by trimming

down handling on code-behind, thus making the code much simpler.

One scenario commonly used is working with a ListBox to show a number of data. The part highlighted in

yellow in the box below shows XAML code that declares the binding of a ListBox to a collection named

“items”.

 <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding

Items}">

 ...

 <TextBlock Text="{Binding LineOne}"/>

 </ListBox>

The part highlighted in green shows that the text value of TextBlock will refer to the property LineOne,

regardless of its value, from the “Items” collection. To learn about it further, we will take a look at a standard

template Windows Phone Tools has provided, Windows Phone Databound Application, which provides a

comprehensible general illustration of databinding usage to display data collection.

1. Create a new Windows Phone Databound Application project. Right click on the solution on

Solution Explorer window, select Add New Project and choose Windows Phone Databound

Application.

49

2. Several files will be automatically created, and we will review them one by one.

Item Description

SampleData/MainViewModelSample

Data.xaml

This file consists of sample data which will be the input

data during design process

ItemViewModel.cs This file declares the view model for each item on the list

MainViewModel.cs This file declares the main view for the application’s main

page

App.xaml The main file, consists of resources usable throughout the

application and events to handle application states

DetailsPage.xaml This file displays detailed data for every item on the list

MainPage.xaml This file displays list from data collections using ListBox

control

3. Now take notice on the application design layout.

50

The main page already has a layout containing item design one, design two, and so on. The data is

retrieved from SampleData and displayed on design time with data context declaration on the page.

<phone:PhoneApplicationPage

 x:Class="WindowsPhoneDataBoundApplication1.MainPage"

 d:DataContext="{d:DesignData SampleData/MainViewModelSampleData.xaml}"

 >

4. Open ItemViewModel.cs file and let’s observe it.

public class ItemViewModel : INotifyPropertyChanged

 {

 private string _lineOne;

 /// <summary>

 /// Sample ViewModel property; this property is used in the view to display

its value using a Binding.

 /// </summary>

 /// <returns></returns>

 public string LineOne

 {

 get

 {

 return _lineOne;

 }

 set

 {

 if (value != _lineOne)

 {

 _lineOne = value;

 NotifyPropertyChanged("LineOne");

 }

 }

 }

....

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

The class includes declarations for properties to be displayed, on the example above consists of 3

properties: a string, PropertyChanged property, and event handler. The last item is used to give

notification when your data is changed.

51

5. Now open MainViewModel.cs file and observe the contents

public MainViewModel()

 {

 this.Items = new ObservableCollection<ItemViewModel>();

 }

 /// <summary>

 /// A collection for ItemViewModel objects.

 /// </summary>

 public ObservableCollection<ItemViewModel> Items { get; private set; }

We can see a declaration of a collection called Items, which consists of ItemVIewModel. This

collection will later be bound with ListBox UI Control. Next we have Load data mechanism, in this

part data is inserted into items. In reality, data source can be a service or a database.

public void LoadData()

 {

 // Sample data; replace with real data

 this.Items.Add(new ItemViewModel() { LineOne = "runtime one", LineTwo =

"Maecenas praesent accumsan bibendum", LineThree = "Facilisi faucibus habitant

inceptos interdum lobortis nascetur pharetra placerat pulvinar sagittis senectus

sociosqu" });

 this.Items.Add(new ItemViewModel() { LineOne = "runtime two", LineTwo =

"Dictumst eleifend facilisi faucibus", LineThree = "Suscipit torquent ultrices

vehicula volutpat maecenas praesent accumsan bibendum dictumst eleifend facilisi

faucibus" });

 this.Items.Add(new ItemViewModel() { LineOne = "runtime three", LineTwo =

"Habitant inceptos interdum lobortis", LineThree = "Habitant inceptos interdum

lobortis nascetur pharetra placerat pulvinar sagittis senectus sociosqu suscipit

torquent" });

 this.IsDataLoaded = true;

 }

6. Now let’s open MainPage.xaml.cs file

// Constructor

 public MainPage()

 {

 InitializeComponent();

 // Set the data context of the ListBox control to the sample data

 DataContext = App.ViewModel;

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);

 }

 // Handle selection changed on ListBox

 private void MainListBox_SelectionChanged(object sender,

SelectionChangedEventArgs e)

 {

 // If selected index is -1 (no selection) do nothing

52

 if (MainListBox.SelectedIndex == -1)

 return;

 // Navigate to the new page

 NavigationService.Navigate(new Uri("/DetailsPage.xaml?selectedItem=" +

MainListBox.SelectedIndex, UriKind.Relative));

 // Reset selected index to -1 (no selection)

 MainListBox.SelectedIndex = -1;

 }

 // Load data for the ViewModel Items

 private void MainPage_Loaded(object sender, RoutedEventArgs e)

 {

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 }

The part highlighted in yellow is how you can set MainPage’s DataContext with App.ViewModel that

refers to an instance of MainViewModel in App.xaml.cs file. With that declaration, MainViewModel

automatically becomes the data source on MainPage.xaml page. There is also a navigation

mechanism in Section Changed event handler from ListBox. It means that if one item in the ListBox is

clicked, it will navigate to DetailPage and display details of the clicked item. This navigation has been

discussed in Navigations on Windows Phone, along with passing parameters to target page. Now

open MainPage.xaml file and observe the code in ListBox.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding

Items}" SelectionChanged="MainListBox_SelectionChanged">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17" Width="432">

 <TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"

Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock Text="{Binding LineTwo}" TextWrapping="Wrap"

Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </Grid>

 </Grid>

Notice that data source of ListBox, the ItemsSource property is Items, an ItemViewModel collection,

and because data context is set to ViewModel then data will automatically be retrieved from

ViewModel. Also notice that inside the ListBox, two TextBlocks are placed each of their values, in

that order, bound to LineOne and LineTwo property of ItemViewModel in ViewModel collection.

Therefore the values are automatically assigned to suitable data.

53

7. Now press F5 and see how the application works.

We can see that emulator displays several data runtime one, two, and so on. When we click an item we will

be directed to the details of the data. This scenario is also known as Master/Detail scenario and can be

applied further to make menu list, display dynamic data, et cetera. With databinding, working with data is

made easier, and the code is cleaner. Furthermore Windows Phone Databound Application implements the

use of MVVM (Model-View-ViewMode) Design Pattern which actuality derives from DataBinding practice.

For applications related to data and MVVM view, maybe you should know that the concept will not be

discussed further here. Search engines should be your good friend :)

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

54

USING ISOLATED STORAGE

Isolated storage is a local storage that can be used for Windows Phone application data storage needs.

When an application is running, it works with a number of data, some of which is temporary and only

required for certain sessions, therefore storing them will not be necessary. This is where isolated storage

comes in handy.

The whole IO operation has to use IsolatedStorage and for security reasons applications cannot access

operating system storage and other application’s space. The figure below shows the storage structure in

Windows Phone applications.

FIGURE 4 LOGICAL FOLDER STRUCTURE

There are two parts of storage, which are standard file folder and a particular folder to store application

settings.

We should put into account that storage space in mobile devices is very limited. However Windows Phone

does not give quota to applications in order to provide high flexibility for developers. Nevertheless, as a

developer we should consider the space storage usage responsibly. Every temporary file should immediately

be deleted, and users should be given the liberty to delete what they store. It would be better to give

transparency to users, letting them know how much space is used in the mobile device. We can also consider

the option of storing in cloud storage, whether it’s in our own application server or in a third party server.

Make sure applications on device are thin, making them comfortable to use. Would users use applications

that take up a lot of space in their mobile device? That’s how smart phones lose their smartness :)

ISOLATED STORAGE FOR FILES

If you continue from the previously made project, then we need a new page to learn about isolated storage,

but if you don’t, create a new project for this matter. If you have learnt everything up to this page that

should be relatively easy to do.

1. Right click on Project, Add New Item and select Windows Phone Portrait Page. Rename the file

as you like, in this example it’s called IsolatedStorage.xaml, then choose Add.

55

2. Insert a button and a TextBox. Click event button will later be set so that it will store the string

inside the TextBox into isolated storage.

3. Next, insert a TextBlock and a button. By clicking the second button, we will call any string stored

in isolated storage.

56

4. Now double click on the first button to handle storing data into isolated storage. Add these

namespaces:

using System.IO;

using System.IO.IsolatedStorage;

And type in the following code:

private void button1_Click(object sender, RoutedEventArgs e)

 {

 IsolatedStorageFile isf =

IsolatedStorageFile.GetUserStoreForApplication();

 isf.CreateDirectory("Data");

 StreamWriter sw = new StreamWriter(new

IsolatedStorageFileStream("Data\\myfile.txt", FileMode.Create, isf));

 sw.WriteLine(textBox1.Text);

 sw.Close();

 }

What the above code does is calling an application specific isolated storage then creates a

folder called Data. The folder creation is meant for data organization simplicity. The code on

the next line creates a stream writer with an isolated storage file as an input then stores the

value from textBox1. Pretty straightforward.

5. Next, double click on the second button to handle loading data from isolatedstorage. Type in the

code below:

 private void button2_Click(object sender, RoutedEventArgs e)

57

 {

 IsolatedStorageFile isf =

IsolatedStorageFile.GetUserStoreForApplication();

 StreamReader sr = null;

 try

 {

 sr = new StreamReader(new

IsolatedStorageFileStream("Data\\myfile.text",FileMode.Open,isf));

 textBlock1.Text = sr.ReadLine();

 sr.Close();

 }

 catch (Exception ex)

 {

 MessageBox.Show("error");

 }

 }

6. Press F5 and let's see how the application works.

ISOLATEDSTORAGE FOR APPLICATION SETTING

Some applications have the need to store user inputs to be used later when the application is restarted. This

scenario is useful for data such as user preferences, URL, or common information. Like other .NET

applications, Window Phone also supports application setting storage. For this purpose we can use

IsolatedStorageSettings.ApplicationSettings. Application Setting itself is an instance of IEnumerable.

58

1. There is no need for a new page, let's just continue from IsolatedStorage.xaml for this purpose.

On the first button's event handler, change the code into the following:

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 settings.Add("duration", "daily");

 settings.Save();

The code above is pretty straightforward: we call for an instance of ApplicationSetting, insert a value

and a key then store it.

2. On the second button's event handler, change the code into the following:

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 string value = "";

 try

 {

 settings.TryGetValue("duration", out value);

 MessageBox.Show(value.ToString());

 }

 catch

 {

 MessageBox.Show("error");

 }

The code above will call an instance of ApplicationSetting, try to fetch the value of duration, and

display it with a MessageBox.

3. Press F5 for results.

59

Press the first button to store the application's setting. Nothing seems to happen, but do believe

that the setting has been saved. To prove this, press the second button. A MessageBox will appear,

showing the value stored in the application's setting.

To delete the setting, it is also quite simple.

 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 settings.Remove("duration");

 settings.Save();

60

SOFT IINPUT PANEL LAYOUT

On Windows Phone devices, with the absence of physical keyboard, you probably would have guessed that

we have to interact with the device using on-screen keyboard. SIP or Soft Input Panel is the name given for

Windows Phone's on-screen keyboard. One of the common scenarios in which SIP will appear is when we

interact with a TextBox.

A standard SIP layout is QWERTY panel with alphabets as the main display. To view the numbers, we press

the digit button on the lower left corner of the keyboard. But there may be certain scenarios in which you'd

want the SIP to only display numbers when users use it to input a value. This can also be a mechanism to

prevent invalid user inputs.

Such configuration can be easily done using LayoutOptions property for SIP. The supported layouts are:

Default, Text, Digits, Web, and Email Address. Each of the layouts has its own unique characteristic. Text for

example, has a similar layout to the default layout but with the addition of autocorrect and text suggestion

features.

To learn about this, let's follow the steps below:

1. If you continue from the previously made project, then add a page to learn about SIP Layout.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click

61

on the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example SIPLayout.xaml then select Add.

2. Add two buttons and a TextBox.

For this example, if the first button is pressed, it will show the Text layout, while pressing the second

button will show the Email layout.

3. Double click on the first button and type in the following code:

62

private void button1_Click(object sender, RoutedEventArgs e)

 {

 textBox1.InputScope = new InputScope()

 {

 Names = { new InputScopeName() { NameValue = InputScopeNameValue.Text }

}

 };

 }

4. Double click on the second button and type in the following code:

private void button2_Click(object sender, RoutedEventArgs e)

 {

 textBox1.InputScope = new InputScope()

 {

 Names = { new InputScopeName() { NameValue =

InputScopeNameValue.EmailSmtpAddress } }

 };

 }

5. Press F5 to see results.

Click on the TextBox first to see the Default layout. Then click on the first button then click on the

TextBox again. Now your keyboard shows the Text layout. When you type in 'Fr' for example, several

word suggestions that you can pick from will appear. Now click on the second button and click the

TextBox again. Although there aren’t any significant differences, now on the bottom part of the

63

keyboard you can see two additional characters, which are @ and .com that we often use to input

email addresses.

6. Other than using code, keyboard layout can also be configured directly with XAML in TextBox

control. Observe the following code:

<TextBox Height="72" HorizontalAlignment="Left" Margin="12,207,0,0" Name="textBox1"

Text="TextBox" VerticalAlignment="Top" Width="460">

 <TextBox.InputScope>

 <InputScope>

 <InputScopeName NameValue="Digits"/>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

7. Press F5 for results. Click on the TextBox and now the SIP layout will display the number panels

as its main display.

Using SIP Layout we can freely configure keyboard display. This should be used to our advantage. A

better implementation of this feature will give the application a more professional feel to it, don't

you think?

64

GETTING TO KNOW WEB BROWSER

Say you want a scenario in which you need to display a webpage but you don't want to use your device's

built-in browser. Web Browser control is an option for this. WebBrowser control is a control that can be used

to display contents in the form of a web page, whether it is a locally stored file or dynamically generated

from a code.

1. If you continue from the previously made project, then add a page to learn about WebBrowser.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click

on the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example WebBrowser.xaml then select Add.

2. Change the page title into WebBrowser, add a TextBox, a button, and WebBrowser from the

toolbox like the figure below.

65

3. Double click on the button and type in the following code:

 private void button1_Click(object sender, RoutedEventArgs e)

 {

 webBrowser1.Navigate(new Uri(textBox1.Text));

 }

To retrieve the web content, call for Navigate method with a URI as input parameter. For starting

point, change the TextBox value into a web address.

66

4. Press F5 for results. This of course is very dependent to your connection speed.

5. Now let's try to dynamically display web content from a code. Type in the code below in GO!

Button's event handler.

 string html = "<html><body bgcolor='white' text='red'><h1>Hello

World</h1></body></html>";

 //webBrowser1.Navigate(new Uri(textBox1.Text));

 webBrowser1.NavigateToString(html);

In this case, use NavigateToString method with an HTML string as input parameter. This string

will be rendered by WebBrowser and be displayed just like any webpage.

6. Press F5 and click on the button. See the results.

67

A file containing HTML declaration can of course be made and stored in local storage. We have

learned about using IsolatedStorage in this part.

68

GLOBALIZATION & LOCALIZATION

Speaking of applications, especially mobile applications, as a developer you surely are not aiming to make an

application just for yourself. You build the application so that it is usable for as many people as possible,

maybe even for users from different countries.

Globalization is used in order to accommodate different cultures, so that applications can be distributed

more broadly. Users often expect to easily adapt to applications they use daily. Examples on the matter are

the language used by labels and information in the application, time format, currency, or calendar format.

If you are experienced in using culture code in other .NET applications, then doing this shouldn't be any

different in Windows Phone. Setting is done by declaring the culture type targeted to certain users in the

format of 2 lower case letters, representing the language used, and 2 upper case letters, representing the

name of the country, in double quotes.

“en-US” English United States “fr-FR” French France

“en-CA” English Canada “fr-CA” French Canada

Localization, on the other hand, is used so that applications can adapt into certain culture. Besides

formatting, it also deals with text translations and other configurations. To do this, we need a separated

resource for the supported cultures, then the applications’ code only have to refer to that certain resource.

Note that separating resource from the code makes a cleaner and more maintainable application.

GLOBALIZATION

1. If you continue from the previously made project, then add a page to learn about Globalization.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click

on the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example Globalization.xaml then select Add.

69

2. Insert a TextBlock and two buttons like the figure below:

3. Double-click on the first button and type in the following code:

CultureInfo cult = new CultureInfo("en-US");

 Thread.CurrentThread.CurrentCulture = cult;

 textBlock1.Text = "Culture : " + Environment.NewLine + cult.NativeName;

 textBlock1.Text += Environment.NewLine + DateTime.Now.ToString("d");

70

 Int32 currency = 12500;

 textBlock1.Text += Environment.NewLine + currency.ToString("C");

Don't forget to add the following namespaces so that Visual Studio recognizes CultureInfo and

Thread classes.

using System.Globalization;

using System.Threading;

Double click on the second button and add the following code:

CultureInfo cult = new CultureInfo("id-ID");

 Thread.CurrentThread.CurrentCulture = cult;

 textBlock1.Text = "Culture : " + Environment.NewLine + cult.NativeName;

 textBlock1.Text += Environment.NewLine + DateTime.Now.ToString("d");

 Int32 currency = 12500;

 textBlock1.Text += Environment.NewLine + currency.ToString("C");

4. Press F5 to see how this application works.

Press the first button, then the second button, and see the difference. What we just did was

displaying the name of the currently used culture and displaying date and currency in a format

suitable to the culture. See the formatting differences between United States and Indonesia.

71

LOCALIZATION

A compiled Windows Phone application will include a number of standard resource and assembly files added

for each localized languages. The language used by Windows Phone UI depends on the culture setting of the

device. Take for example an application that has resources in English and Indonesian. If the device's culture

setting is en-US, then the application will display the English resource. During compilation, Visual Studio will

generate a standard culture used in main assembly and automatically generate a different assembly for

other language resource that the developer created.

1. If you continue from the previously made project, then add a page to learn about Localization.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click

on the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example Localization.xaml then select Add.

2. On Solution Explorer window, right click on project, then select Add > New Item. On the dialog

box, select Resource File, and rename it accordingly, for example AppResources.resx. This is the

file that will store a different language for the application.

72

3. List all the strings in the application and add them inside the resource file. Each string consists of

name, value, and optional comment. The name should be descriptive and unique. Values are in

the form of string and will be displayed to users. For example the file is AppResources.resx, and

this file will contain default values of the application.

Add a resource file for each language your application supports. The example below is resource

file for Indonesian.

73

Each resource should obey the following name convention:

<default resource filename>.<culture name> where culture name is derived from

CultureInfo, for example :

AppResources.id-ID.resx and AppResources.en-US.resx

4. Define standard culture which the application supports. Do this by right clicking on project name

and select Properties. On Application tab, click the Assembly Information button. On Neutral

Language, select default culture. This choice will identify the language used as standard

language.

74

5. Close the project and open (<projectname>.csproj) file using a text editor. Find

<SupportedCultures> tag and add cultures that are supported by the application. Separate each

language using a semicolon. It is not necessary to add default UI, this means that if the

application supports English, United States with Indonesian, Indonesia as an alternative, the tag

will look like this:

 <SupportedCultures>id-ID; SupportedCultures>

6. Close the text editor and reopen the project using Visual Studio. Add a class into which we will

add a property that refers to the previously made resource.

75

Type in the following code:

public class LocalizedStrings

 {

 private static BukuWinPhone7.AppResources localizedresouces = new AppResources();

 public BukuWinPhone7.AppResources Localizedresources

 {

 get { return localizedresouces; }

 }

 }

7. Open App.xaml file and add a reference to the resources file that we've made

<Application

 x:Class="BukuWinPhone7.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

.....

 xmlns:local="clr-namespace:BukuWinPhone7"

 >

 <!--Application Resources-->

 <Application.Resources>

 <local:LocalizedStrings x:Key="LocalizedStrings"></local:LocalizedStrings>

 ...

76

 </Application.Resources>

Key value is used to call the resource later on.

8. Open Localization.xaml file and insert several TextBox like the figure below:

9. Now we will call resource to fill the value of page title, name, and address. What we will do is

basically using databinding on Silverlight so that the code can be clean. Observe how to do it in

XAML file:

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"

Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="{Binding

Path=Localizedresources.Title, Source={StaticResource LocalizedStrings}}" Margin="9,-

7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Height="30" HorizontalAlignment="Left" Margin="16,16,0,0"

Name="textBlock1" Text="{Binding Path=Localizedresources.LabelName,

Source={StaticResource LocalizedStrings}}" VerticalAlignment="Top" />

 <TextBlock Height="30" HorizontalAlignment="Left" Margin="16,64,0,0"

Name="textBlock2" Text="{Binding Path=Localizedresources.LabelAddress,

Source={StaticResource LocalizedStrings}}" VerticalAlignment="Top" />

77

 </Grid>

 </Grid>

The parts highlighted in yellow are ways to call resources we previously created. Property path contains

the name of a string that is automatically bound to a suitable value, while source defines where the

resource data comes from. On the above example it is named LocalizedStrings which refers to

ApplicationResources in App.xaml file

10. Press F5 and see the results

11. Stop the debugging process and add the following code into App.xaml.cs.

// Code to execute when the application is launching (eg, from Start)

 // This code will not execute when the application is reactivated

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

 CultureInfo cul = new CultureInfo("id-ID");

 Thread.CurrentThread.CurrentCulture = cul;

 Thread.CurrentThread.CurrentUICulture = cul;

 }

We are changing the culture used so that it follows the resource file we have prepared for

Indonesian. Press F5 to see results.

78

As expected, the application can adapt with the selected culture and automatically load the resource

we've created. Using localization we can create an application that can adapt to its users. We also

have the advantage of having a cleaner, more maintainable code thus making it easier to develop

further.

79

LOCATION BASED SYSTEM

Location based system has become a certain trend in 2010. We can see services such as Gowalla,

Foursquare, and even Facebook offering location features in their applications. The ability to retrieve

locations gives developers an opportunity to give a unique user experience.

Any Windows Phone device manufacturer are obliged to include in the device a sensor that can fetch the

device's location at a given time. Furthermore the location service from Microsoft enables us to develop

location-aware applications on Windows Phone. This service can fetch location data from GPS, Wi-Fi, or

cellular towers. All three data source can be retrieved using managed code.

There are several things to take into account in using location sensors on the device. The first one is

movement threshold. This is set in meters and we need to consider its effect to battery consumption and

noise handling of movement changes due to GPS sensor. Sensor accuracy can also be managed depending

on the needs of the application. Using higher accuracy will surely give a better result, but it will also cause a

battery drain. Meanwhile battery consumption is highly critical in mobile application. Reckless handling

regarding this matter will cause a bad user experience. This is how smart phones become dumb.

To study the ways of using location features on Windows Phone, observe the steps below:

1. If you continue from the previously made project, then add a page to learn about Location.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click

on the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example Location.xaml then select Add

2. Insert a button and a TextBlock so that it looks like this:

80

3. To use GPS, we need to add a reference to System.Device. To do this, right click on References

and select Add Reference.

4. Now we will add a reference and an instance of GeoCoordinateWatcher class which we will use

to retrieve position from the device's GPS.

using System.Device.Location;

namespace BukuWinPhone7

{

81

 public partial class Location : PhoneApplicationPage

 {

 GeoCoordinateWatcher watcher;

 public Localization()

 {

 InitializeComponent();

 }

 }

}

5. Use the Start function in the GeoCoordinateWatcher class instance to retrieve data from

location service. In this example, data will be fetched when the button is pressed. Add an event

handler on the button.

private void button1_Click(object sender, RoutedEventArgs e)

 {

 if (watcher == null)

 {

 watcher = new GeoCoordinateWatcher(GeoPositionAccuracy.Default);

 watcher.MovementThreshold = 20; //to lower noise

 watcher.StatusChanged += new

EventHandler<GeoPositionStatusChangedEventArgs>(watcher_StatusChanged);

 watcher.PositionChanged += new

EventHandler<GeoPositionChangedEventArgs<GeoCoordinate>>(watcher_PositionChanged);

 watcher.Start();

 }

 }

 void watcher_PositionChanged(object sender,

GeoPositionChangedEventArgs<GeoCoordinate> e)

 {

 throw new NotImplementedException();

 }

 void watcher_StatusChanged(object sender, GeoPositionStatusChangedEventArgs e)

 {

 throw new NotImplementedException();

 }

Remember that we need to implement an event handler for status change (whether or not the

location service is available) and position change. Start function will call for service asynchronously

so users can still use the application.

6. For status change handler, notice that this event handler will be called by a different thread from

the active page. For this reason, we need to utilize Dispatcher to invoke functions in the page's

thread.

82

void watcher_StatusChanged(object sender, GeoPositionStatusChangedEventArgs e)

 {

 Deployment.Current.Dispatcher.BeginInvoke(() =>

 MyStatusChanged(e));

 }

 void MyStatusChanged(GeoPositionStatusChangedEventArgs e)

 {

 switch (e.Status)

 {

 case GeoPositionStatus.NoData :

 MessageBox.Show("No Data Available");

 break;

 case GeoPositionStatus.Ready :

 //donothing

 break;

 case GeoPositionStatus.Disabled:

 MessageBox.Show("Location service is disabled");

 break;

 }

 }

7. As the location service is active and receives data, it will invoke PositionChanged event,

therefore the handling of position change can be done according to an application logic that we

want. The same thing applies for status change event; we need to use Dispatcher to call the

handler.

 void watcher_PositionChanged(object sender,

GeoPositionChangedEventArgs<GeoCoordinate> e)

 {

 Deployment.Current.Dispatcher.BeginInvoke(() => MyPosititonChanged(e));

 }

 void MyPosititonChanged(GeoPositionChangedEventArgs<GeoCoordinate> e)

 {

 textBlock1.Text = e.Position.Location.Latitude.ToString("0.000") + " " +

e.Position.Location.Longitude.ToString("0.000");

 }

8. Press F5 and observe the result. Press the button to see how the application works. Of course,

since we are using an emulator, the data service will not be available, but the code will work on

a real device.

83

84

GETTING TO KNOW ACCELEROMETER

Accelerometer is a component to measure acceleration in such a way that it can detect changes in the

device's position and the magnitude of the change. Microsoft requires every Windows Phone manufacturer

to put this sensor in every device that supports Windows Phone. This way, a change in the device's physical

position can be used as an alternative for users to interact with a Windows Phone application.

This component gives as a new user experience in interacting with the device's movement. This can be used

not only for standard applications but especially for games also.

To use accelerometer, you need to import Microsoft.Devices.Sensors dll.

It's pretty simple to use; there are two basic functions, Start and Stop, and an event to handle, which is

ReadingChanged. Accelerometer detects a change in the x, y, and z dimensions. Using the value it detects,

we can write certain code that reacts depending on the change.

The device's axis does not change on orientation change. The Y axis is always from the top to the

bottom of the device, perpendicular to the three hardware buttons, the X axis is always from one

side of the device to another, parallel to the three hardware button, while the Z axis is a virtual axis

that goes through the device, assuming we are holding the device and looking at it. The value we can

get ranges from -1 to 1.

85

For reading schema, take a look at these illustrations of result values from the accelerometer:

Upright : 0 -1 0

86

Rotated counterclockwise : -1 0 0

Rotated clockwise : 1 0 0

Lying flat : 0 0 -1

87

Now we will learn how to retrieve data from the sensor.

1. If you continue from the previously made project, then add a page to learn about

Accelerometer. Otherwise, create a new project for this purpose. Having been doing exercises

up to this page, it should be fairly easy to do. The following example uses a previously existing

project. Right click on the project, Add New Item, select Windows Phone Portrait Page and

rename the file, in this example Accelerometer.xaml then select Add.

2. Add a button and a TextBlock so that it looks like this:

3. Add a reference to Microsoft.Devices.Sensors assembly. On Solution Explorer window, right

click on Reference and select Add New Reference

88

4. Add the following code:

using Microsoft.Devices.Sensors;

namespace BukuWinPhone7

{

 public partial class Accelerometer : PhoneApplicationPage

 {

 Accelerometer accelerometer;

 public Accelerometer()

 {

 InitializeComponent();

 }

 }

}

Don't forget to add assembly usage reference. On the next part the Accelerometer object id defined

for us to use later.

5. Add an event handler on the button using this code:

private void button1_Click(object sender, RoutedEventArgs e)

 {

 if (accelerometer == null)

 {

89

 accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += new

EventHandler<AccelerometerReadingEventArgs>(accelerometer_ReadingChanged);

accelerometer.Start();

 }

 }

 void accelerometer_ReadingChanged(object sender,

AccelerometerReadingEventArgs e)

 {

 throw new NotImplementedException();

 }

After instantiating accelerometer, add a handler to handle data change from the sensor.

6. Because data changes are sent constantly and this may happen during thread runtime, in

fetching data we need to use Dispatcher to invoke data change event handler.

void accelerometer_ReadingChanged(object sender, AccelerometerReadingEventArgs e)

 {

 Deployment.Current.Dispatcher.BeginInvoke(() MyReadingChanged(e));

 }

7. Insert a function to handle the data change.

void MyReadingChanged(AccelerometerReadingEventArgs e)

 {

 textBlock1.Text = String.Format("{0} {1} {2}", e.X.ToString(),

e.Y.ToString(), e.Z.ToString());

 }

Fill this part with the logic for the application you're developing.

8. Press F5 and press button, see what happens.

90

Accelerometer shows the values 0 0 -1, which means the emulator is in lying flat position. Since the

emulator doesn't have built in support for accelerometer, we cannot test this function using emulator.

There are several things to remember. Getting the exact value of 1.0 is however very unlikely to ever

happen because gravity does not work that way. It may astound you how standing on top of a mountain

or shaking your hand too much can add pressure on the device.

Accelerometer has its own fault tolerance, so maybe you would want to experiment on the total value of

the fault.

Imagine that you will receive a lot of new data changes, precisely 50 times per second. This means that

the amount of data we will receive is humongous. Retrieved data is very likely to be unstable due to the

nature of accelerometer sensor itself. Even when the device is lying on a table, any variation may occur.

This means that any application that uses accelerometer needs a reading mechanism, whether it's

calibration or smoothing for any data received from the component.

Further information regarding this topic can be obtained here.

91

BING MAPS CONTROL FOR WINDOWS PHONE

Bing™ Maps Silverlight ® Control for Windows® Phone combines the powers of Silverlight and Bing Maps to

support applications. Developers can now use Bing Maps Silverlight Control, which includes location and

search services. For those of you who are quite familiar with using this control in standard Silverlight

applications, you surely won't see any difficulties to use the control in your Windows Phone applications.

To be able to use this service, you have to register in order to get a key to use control, SOAP Services, REST,

and Bing Spatial Data Services. Without a valid key we will not be able to fetch data via web.

REGISTERING BING MAPS ACCOUNT

1. Open your browser and go to page http://www.bingmapsportal.com

2. Select Create to make a new account using Windows Live ID

3. Complete your registration data on the next page

4. After it's finished, create a new key for your application. Select Create or view keys from the

links on the left

5. Complete the application details, and click Create key

Secure this key for later purposes.

http://www.bingmapsportal.com/

USING BING MAPS CONTROL

1. If you continue from the previously made project, then add a page to learn about Bing Maps.

Otherwise, create a new project for this purpose. Having been doing exercises up to this page, it

should be fairly easy to do. The following example uses a previously existing project. Right click on

the project, Add New Item, select Windows Phone Portrait Page and rename the file, in this

example BingMaps.xaml then select Add.

2. Add a map control from the toolbox

93

3. Change the properties in WMAppManifest.xml so that BingMaps.xaml is the initial page for the

application. Press F5 and see the results

On the center of the control you will see a warning: “Invalid Credentials. Sign up for a developer

account”. This indicates that you haven't inserted your key, which will allow you to use Bing

maps services.

4. Open BingMaps.xaml file and insert your key.

<!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <my:Map CredentialsProvider="<insert your key here>" Height="601"

HorizontalAlignment="Left" Margin="0,6,0,0" Name="map1" VerticalAlignment="Top"

Width="450" />

 </Grid>

5. Press F5 and see that the warning has disappeared.

94

6. Now we add a simple functionality that will automatically add a marker, or more generally

known as pushpin, whenever we click on an area on the map. Add an event handler to handle

click event on the map.

 private void map1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

 {

 Pushpin p = new Pushpin()

 {

 Location = map1.ViewportPointToLocation(e.GetPosition(sender as

Map)),

 Content = "marker"

 };

 (sender as Map).Children.Add(p);

 }

7. Press F5 and see the result. Click anywhere to add a marker on the map.

95

Pretty simple, isn't it? The addition of map control on Windows Phone gives developers more

freedom to enrich user experiences, especially on using maps and other Bing Maps services. The

topic about Bing Maps Control Silverlight itself has a very wide scope which will not be discussed

further here. If you are interested, you can see references on MSDN site or interactive SDK for

Silverlight.

http://msdn.microsoft.com/en-us/library/dd877180.aspx

PART III

PRACTICE

97

#1 - UNIT CONVERTER

This Unit Converter application we are making is an application to convert values from one measurement

unit to another, for example from meter to feet, or from mile to kilometer. Conceptually, we will use several

aspect we discussed on the LEARN part, which are using SIP Layout (Digit), IsolatedStorage to store settings,

Globalization and Localization, and Pivot as main layout.

PREPARING THE MAIN INTERFACE

1. Open your copy of Visual Studio. To be safe, do this in Run as Administrator mode.

2. Create a new project and select Windows Phone Pivot Application. Name the project as you

like. In this example it's ConverterUnitApps.

3. Configure the MainPage.xaml file: name the application, name the PivotItem header, and delete

the mark-up from PivotItem content. Now your code should look like this:

 <!--LayoutRoot is the root grid where all page content is placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <!--Pivot Control-->

 <controls:Pivot Title="CONVERTER UNIT">

 <!--Pivot item one-->

 <controls:PivotItem Header="convert">

 </controls:PivotItem>

 <!--Pivot item two-->

 <controls:PivotItem Header="settings">

98

 </controls:PivotItem>

 </controls:Pivot>

 </Grid>

4. Insert two TextBoxes and two PickerBoxes. Textbox will contain the measurement value input

while list picker will provide the measurement units. Add these items into a PivotItem named

convert.

<controls:PivotItem Header="convert">

 <StackPanel Orientation="Vertical">

 <StackPanel Orientation="Horizontal">

 <TextBlock Margin="10" Style="{StaticResource

PhoneTextTitle2Style}" Text="From"></TextBlock>

 <TextBox Height="72" HorizontalAlignment="Left"

Margin="0,0,0,0" Name="unitone" Text="0" Width="213" Canvas.Left="0" Canvas.Top="0">

 </TextBox>

 </StackPanel>

 <my:ListPicker Margin="103,10,10,10" FontSize="30" Height="50"

HorizontalAlignment="Left" Name="measurementunitone" Width="100" Padding="5,0,0,0"/>

 <StackPanel Margin="0,20,0,0" Orientation="Horizontal">

 <TextBlock Margin="10,10,0,10" Style="{StaticResource

PhoneTextTitle2Style}" Text="To"></TextBlock>

 <TextBox Margin="45,0,0,0" HorizontalAlignment="Left"

Canvas.Left="0" Canvas.Top="0" Height="72" Name="unittwo" Text="0"

Width="213"></TextBox>

 </StackPanel>

 <my:ListPicker Margin="103,10,10,10" FontSize="30" Height="50"

HorizontalAlignment="Left" Name="measurementunittwo" Width="100" Padding="5,0,0,0" />

 </StackPanel>

 </controls:PivotItem>

99

Note:

We intentionally don't use ComboBox for unit selection. Although ComboBox is not available in

the toolbox, we can actually insert it using XAML code. However, based on Windows Phone UI

Guidelines, this control is not a part of Windows Phone UX platform for its natural characteristic

that requires mouse/stylus precision. Hence the use of list picker. This control is implemented by

Alex Yakhnin here according to the list picker style available in the emulator's setting.

100

5. Open MainPage.xaml.cs file end add the following code to insert items to list picker:

public List<String> UnitList = new List<String>() { "mm", "inch", "mile",

"feet" };

 // Constructor

 public MainPage()

 {

 InitializeComponent();

 // Set the data context of the ListBox control to the sample data

 DataContext = App.ViewModel;

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);

 }

 // Load data for the ViewModel Items

 private void MainPage_Loaded(object sender, RoutedEventArgs e)

 {

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 measurementunitone.ItemsSource = UnitList;

 measurementunittwo.ItemsSource = UnitList;

 }

101

6. Press F5 and check whether or not the application layout has met our expectations.

CONVERTING

1. To do a conversion we need a converter table. This table stores scales for each units. There are

many ways to implement this, but to keep it simple, in this example unit converters will be listed

in a dictionary.

public Dictionary<string, double> ConverterList = new Dictionary<string,

double>();

private void InitConveterList()

 {

 //to cm

 ConverterList.Add("inch-cm", 2.54);

 ConverterList.Add("feet-cm", 30.48);

 ConverterList.Add("mile-cm", 160934);

 ConverterList.Add("cm-cm", 1.0);

 //from cm

 ConverterList.Add("cm-inch", 0.39);

 ConverterList.Add("cm-feet", 0.03);

 ConverterList.Add("cm-mile", 0.0000062);

 //to inch

102

 ConverterList.Add("feet-inch", 11.8872);

 ConverterList.Add("mile-inch", 62764.26);

 ConverterList.Add("inch-inch", 1.0);

 //from inch

 ConverterList.Add("inch-feet", 0.0762);

 ConverterList.Add("inch-mile", 0.00001578);

 //to feet

 ConverterList.Add("mile-feet", 4828.02);

 ConverterList.Add("feet-feet", 1.0);

 //from feet

 ConverterList.Add("feet-mile", 0.0002);

 //from mile

 ConverterList.Add("mile-mile", 1.0);

 }

2. Next, we add a converter function using the table we've created.

 private double ConvertMeasurement(String unitone,String unitwo,double value)

 {

 double unit = 1.0;

 ConverterList.TryGetValue(unitone + unittwo, out unit);

 return unit * value;

 }

3. Double click on the first TextBox to add an event handler. This event handler processes the input

on the TextBox and displays the result in the second TextBox.

 private void unitone_TextChanged(object sender, TextChangedEventArgs e)

 {

 unittwo.Text =

ConvertMeasurement(measurementunitone.SelectedItem.ToString(),

measurementunittwo.SelectedItem.ToString(), Double.Parse((sender as

TextBox).Text)).ToString();

 }

4. Add an input scope and limit the valid input to numbers only. Do this for both TextBoxes.

<TextBox Height="72" HorizontalAlignment="Left" Margin="0,0,0,0" Name="unitone"

Text="0" Width="336" Canvas.Left="0" Canvas.Top="0"

TextChanged="unitone_TextChanged" >

 <TextBox.InputScope>

103

 <InputScope>

 <InputScopeName

NameValue="Digits"></InputScopeName>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

5. To give a better user experience, add an update function when measurements are changed

during runtime. Double click on the list picker and add the following code:

private void measurementunitone_SelectionChanged(object sender,

SelectionChangedEventArgs e)

 {

 double value;

 if (double.TryParse(unitone.Text, out value))

 {

 unittwo.Text =

ConvertMeasurement(measurementunitone.SelectedItem.ToString(),

measurementunittwo.SelectedItem.ToString(), value).ToString();

 }

 else

 {

 unittwo.Text = "";

 }

 }

6. Press F5 and observe the results.

104

ADDING CULTURE LIST

User preference is provided ultimately to adjust to language or culture selection that users want for the

application. This will affect the application's presentation and surely the more adjustable it is to users'

expectations, the better.

1. Let's prepare culture selections for users to select from. Insert a list picker on the second

PivotItem.

 <!--Pivot item two-->

 <controls:PivotItem Header="settings">

 <StackPanel Orientation="Vertical">

 <TextBlock Margin="10,10,0,10" Style="{StaticResource

PhoneTextTitle2Style}" Text="Culture"></TextBlock>

 <my:ListPicker Margin="10,10,10,10" FontSize="30" Height="50"

HorizontalAlignment="Left" Name="culturelist" Width="440" Padding="5,0,0,0" />

 </StackPanel>

 </controls:PivotItem>

105

2. We are going to add culture list for the application. In this example we will only handle two

cultures (you can later add more, according to your application's needs), which are US and

Indonesia.

 public Dictionary<string, string> CultureList = new Dictionary<string,

string>();

private void InitCultureList()

 {

 CultureList.Add("en-US", "United States of America");

 CultureList.Add("id-ID", "Indonesia");

 culturelist.ItemsSource = CultureList;

 culturelist.DisplayMemberPath = "Value";

 }

Call for InitCultureList function in Main_Loaded()

private void MainPage_Loaded(object sender, RoutedEventArgs e)

 {

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 measurementunitone.ItemsSource = UnitList;

 measurementunittwo.ItemsSource = UnitList;

 InitConveterList();

 InitCultureList();

106

 }

3. Press F5 to see results. Select the Setting tab and you can see that users can now select the

culture they want to use in the application.

4. Add an event handler to change cultures according to users' selection. Double click on the list

picker and add the following code:

private void culturelist_SelectionChanged(object sender, SelectionChangedEventArgs e)

 {

 String culture = ((KeyValuePair<String,

String>)culturelist.SelectedItem).Key.ToString();

 CultureInfo cult = new CultureInfo(culture);

 Thread.CurrentThread.CurrentCulture = cult;

 }

5. Press F5 and see results. Change the culture and return to the conversion page. If you try out the

Indonesian culture, the decimal value separator will change from (.) to (,) .

107

SAVING USER PREFERENCES

To permanently keep the user preferences for later uses of the application, the data should be stored in

IsolatedStorage. This will be done in the Application Closing event so that users don't have to bother saving

the preferences manually.

1. Open App.xaml.cs and add the following code:

IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 if (!settings.Contains("culture"))

 {

 settings.Add("culture", Thread.CurrentThread.CurrentCulture.Name);

 }

 else

 {

 settings["culture"]= Thread.CurrentThread.CurrentCulture.Name;

 }

 settings.Save();

 Don't forget to add directive

using System.IO.IsolatedStorage;

using System.Threading;

2. Next, we need to load the setting when the application is first started. To do this, still in

App.xaml.cs we add a load function in Application_Loading event handler

private void Application_Launching(object sender, LaunchingEventArgs e)

 {

108

 IsolatedStorageSettings settings =

IsolatedStorageSettings.ApplicationSettings;

 string value = "";

 try

 {

 settings.TryGetValue("culture", out value);

 Thread.CurrentThread.CurrentCulture = new

System.Globalization.CultureInfo(value);

 }

 catch

 {

 Debug.WriteLine("error load the culture info..");

 }

 }

3. Press F5 and see results. Try changing the culture preferences, then close the application and

start it again. Does it store your preferred culture?

109

Up to this point the simple Unit Converter application is successfully built. You can of course develop

the application further, like add more measurement units (not only length but also weight et cetera),

add more supported languages, or create a better interface.

110

#2 – STOCK SCREEN

Do you like to invest and try your luck with stocks? If your answer is yes, then you surely need an application

that can help you survey companies' stock values in the stock market. In the following exercise we will

develop a simple application to see several companies' stock values, do stock analysis, et cetera. For this

application, the concepts we will implement are databinding, using application bar, navigating with

parameters, and consuming services. The service consumption we will simulate in this example will be

stored within our network so that it will not need internet connections.

PREPARING DATA FOR COMPANY STOCK VALUES

In this sample application, we will not use a real-time data, but a previously downloaded one. There's no

need to fuss over this matter; if you want to use real-time data, what you need to do is find the data source,

Yahoo Finance for example. The use of this downloaded data is just so that this application can be deployed

in your machine.

For the data we will use, I would like to personally thank my colleague Kaisar Siregar, for lending the stock

data and analysis based on the stock analysis technique which was a part of his final project. For those of you

who would like to know further about said technique, please contact kaisar.siregar@gmail.com

Here are the data to prepare:

1. Company Stock Data

<?xml version="1.0" encoding="utf-8"?>

<Infos>

 <Info>

 <Symbol>MSFT</Symbol>

 <Name>Microsoft Corpora</Name>

 <Close>29.32</Close>

 <Date>4/7/2010</Date>

 <Change>0.1</Change>

 </Info>

 <Info>

 <Symbol>YHOO</Symbol>

 <Name>Yahoo! Inc.</Name>

 <Close>16.92</Close>

 <Date>4/7/2010</Date>

 <Change>-0.06</Change>

 </Info>

 <Info>

 <Symbol>AAPL</Symbol>

 <Name>Apple Inc.</Name>

 <Close>239.54</Close>

 <Date>4/7/2010</Date>

 <Change>1.61</Change>

 </Info>

 <Info>

 <Symbol>GOOG</Symbol>

 <Name>Google Inc.</Name>

mailto:kaisar.siregar@gmail.com

111

 <Close>568.22</Close>

 <Date>4/7/2010</Date>

 <Change>-2.994</Change>

 </Info>

</Infos>

Save this under the name CompanyInfo.xml

2. Company Transaction Signal Data

<?xml version="1.0" encoding="utf-8"?>

<Infos>

 <Info>

 <Symbol>MSFT</Symbol>

 <Name>Microsoft Corpora</Name>

 <Date>4/6/2010</Date>

 <Signal>Buy</Signal>

 <Interval>Daily</Interval>

 </Info>

 <Info>

 <Symbol>YHOO</Symbol>

 <Name>Yahoo! Inc.</Name>

 <Date>4/6/2010</Date>

 <Signal>Buy</Signal>

 <Interval>Daily</Interval>

 </Info>

 <Info>

 <Symbol>AAPL</Symbol>

 <Name>Apple Inc.</Name>

 <Date>4/6/2010</Date>

 <Signal>Buy</Signal>

 <Interval>Daily</Interval>

 </Info>

 <Info>

 <Symbol>GOOG</Symbol>

 <Name>Google Inc.</Name>

 <Date>4/5/2010</Date>

 <Signal>Buy</Signal>

 <Interval>Daily</Interval>

 </Info>

</Infos>

Save under the name CompanySignal.xml

3. Company Transaction Signal Details

AAPL

<?xml version="1.0" encoding="utf-8"?>

<Signals>

 <Signal>

112

 <Date>4/6/2010</Date>

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>4/5/2010</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>4/1/2010</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>2/1/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>11/30/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>9/21/2009</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>3/30/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>3/9/2009</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>1/26/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>6/2/2008</Date>

 <Type>Sell Monthly</Type>

 </Signal>

 <Signal>

 <Date>9/1/2006</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>5/1/2006</Date>

 <Type>Sell Monthly</Type>

 </Signal>

</Signals>

MSFT

<?xml version="1.0" encoding="utf-8"?>

113

<Signals>

 <Signal>

 <Date>4/6/2010</Date>

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>4/5/2010</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>4/1/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>3/29/2010</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>3/29/2010</Date>

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>3/22/2010</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>3/1/2010</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>2/22/2010</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>2/3/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>2/1/2010</Date>

 <Type>Sell Monthly</Type>

 </Signal>

 <Signal>

 <Date>12/1/2009</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>8/24/2009</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>4/13/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

114

 <Signal>

 <Date>4/6/2009</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>1/20/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>4/2/2007</Date>

 <Type>Sell Monthly</Type>

 </Signal>

 <Signal>

 <Date>11/1/2006</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>9/1/2006</Date>

 <Type>Sell Monthly</Type>

 </Signal>

</Signals>

GOOG

<?xml version="1.0" encoding="utf-8"?>

<Signals>

 <Signal>

 <Date>4/5/2010</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>4/5/2010</Date>

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>4/1/2010</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>3/29/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>3/22/2010</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>3/8/2010</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>2/23/2010</Date>

115

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>2/10/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>2/5/2010</Date>

 <Type>Buy Daily</Type>

 </Signal>

 <Signal>

 <Date>2/1/2010</Date>

 <Type>Sell Monthly</Type>

 </Signal>

 <Signal>

 <Date>2/1/2010</Date>

 <Type>Sell Daily</Type>

 </Signal>

 <Signal>

 <Date>12/1/2009</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>3/30/2009</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>11/17/2008</Date>

 <Type>Buy Weekly</Type>

 </Signal>

 <Signal>

 <Date>11/10/2008</Date>

 <Type>Sell Weekly</Type>

 </Signal>

 <Signal>

 <Date>10/1/2007</Date>

 <Type>Sell Monthly</Type>

 </Signal>

 <Signal>

 <Date>3/1/2007</Date>

 <Type>Buy Monthly</Type>

 </Signal>

 <Signal>

 <Date>9/1/2006</Date>

 <Type>Sell Monthly</Type>

 </Signal>

</Signals>

Store each file under the name CompanySignal-<company_name>.xml

4. Company Stock Trade Data

AAPL

116

<?xml version="1.0" encoding="utf-8"?>

<Quotes>

 <Ask>241.16</Ask>

 <AverageDailyVolume>22314300</AverageDailyVolume>

 <Bid>241.13</Bid>

 <Change>1.61</Change>

 <ChangeinPercent>0.67</ChangeinPercent>

 <DividendShare>0</DividendShare>

 <DividendYield>0</DividendYield>

 <ExDividendDate>21-Nov-95</ExDividendDate>

 <LastTradePriceOnly>241.15</LastTradePriceOnly>

 <MarketCapitalization>218.7B</MarketCapitalization>

 <Name>Apple Inc.</Name>

 <OneyrTargetPrice>267.54</OneyrTargetPrice>

 <PERatio>23.33</PERatio>

 <PreviousClose>239.54</PreviousClose>

 <TradeDate>4/7/2010 11:25:04 PM</TradeDate>

 <Volume>8277227</Volume>

 <YearHigh>240.24</YearHigh>

 <YearLow>114.19</YearLow>

</Quotes>

MSFT

<?xml version="1.0" encoding="utf-8"?>

<Quotes>

 <Ask>29.43</Ask>

 <AverageDailyVolume>58268100</AverageDailyVolume>

 <Bid>29.42</Bid>

 <Change>0.1</Change>

 <ChangeinPercent>0.34</ChangeinPercent>

 <DividendShare>0.52</DividendShare>

 <DividendYield>1.77</DividendYield>

 <ExDividendDate>Feb 16</ExDividendDate>

 <LastTradePriceOnly>29.42</LastTradePriceOnly>

 <MarketCapitalization>258.0B</MarketCapitalization>

 <Name>Microsoft Corpora</Name>

 <OneyrTargetPrice>33.73</OneyrTargetPrice>

 <PERatio>16.15</PERatio>

 <PreviousClose>29.32</PreviousClose>

 <TradeDate>4/7/2010 11:25:11 PM</TradeDate>

 <Volume>25815184</Volume>

 <YearHigh>31.5</YearHigh>

 <YearLow>18.47</YearLow>

</Quotes>

GOOG

<?xml version="1.0" encoding="utf-8"?>

<Quotes>

 <Ask>565.46</Ask>

 <AverageDailyVolume>3645340</AverageDailyVolume>

117

 <Bid>565.17</Bid>

 <Change>-2.994</Change>

 <ChangeinPercent>-0.53</ChangeinPercent>

 <DividendShare>0</DividendShare>

 <DividendYield>0</DividendYield>

 <ExDividendDate>N/A</ExDividendDate>

 <LastTradePriceOnly>565.226</LastTradePriceOnly>

 <MarketCapitalization>179.7B</MarketCapitalization>

 <Name>Google Inc.</Name>

 <OneyrTargetPrice>673.7</OneyrTargetPrice>

 <PERatio>27.83</PERatio>

 <PreviousClose>568.22</PreviousClose>

 <TradeDate>4/7/2010 11:25:09 PM</TradeDate>

 <Volume>904905</Volume>

 <YearHigh>629.51</YearHigh>

 <YearLow>355.31</YearLow>

</Quotes>

Save each file under the name CompanyQuotes-<company_name>.xml

5. Subscribed Companies Data

<?xml version="1.0" encoding="utf-8"?>

<Subscriptions>

 <Subscription>

 <Symbol>AAPL</Symbol>

 <Name>Apple Inc.</Name>

 </Subscription>

 <Subscription>

 <Symbol>GOOG</Symbol>

 <Name>Google Inc</Name>

 </Subscription>

 <Subscription>

 <Symbol>MSFT</Symbol>

 <Name>Microsoft </Name>

 </Subscription>

</Subscriptions>

Save under the name SubscribtionList.xml

6. Non-Subscribed Companies Data

<?xml version="1.0" encoding="utf-8"?>

<Subscriptions>

 <Subscription>

 <Symbol>YHOO</Symbol>

 <Name>Yahoo! Inc</Name>

 </Subscription>

</Subscriptions>

118

Save under the name UnsubscribtionList.xml.

7. Put all files in one folder. Copy the folder to IIS Root folder. This folder can normally be found in

C:\inetpub\wwwroot\. In this example, the folder is named DataSaham

8. Open Internet Information Services (IIS) Manager, then right click on Default Web Site ->Add

Virtual Directory

Add an alias data saham and refer to the previously saved folder for the physical path. Then click

OK.

119

9. To check it, insert the following link to your browser:

http://localhost/datasaham/CompanyInfo.xml. This should display the CompanyInfo data.

At this point, data is ready for consumption.

PREPARING COMPANY STOCK LIST PAGE

1. Create a new project, select Windows Phone Databound Application. Rename the project as

you wish; in this example we name it StockScreenApps

http://localhost/datasaham/CompanyInfo.xml

120

2. Add a title for our application. On the markup, in the content section, add the code below:

<StackPanel Orientation="Vertical">

 <StackPanel x:Name="HeadingPanel" Grid.Row="1"

Orientation="Horizontal" Margin="5,20,5,20">

 <TextBlock x:Name="SymbolTitle" Text="Symbol" MinWidth="180"

Margin="-3,-8,0,0" Style="{StaticResource PhoneTextLargeStyle}"/>

 <TextBlock x:Name="LastTradeTitle" Text="Last Trade"

MinWidth="170" Margin="-3,-8,0,0" Style="{StaticResource PhoneTextLargeStyle}"/>

 <TextBlock x:Name="ChangeTitle" Text="Change" Margin="-3,-8,0,0"

Style="{StaticResource PhoneTextLargeStyle}"/>

 </StackPanel>

 <ListBox x:Name="MainListBox" ItemsSource="{Binding Items}"

SelectionChanged="MainListBox_SelectionChanged">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel x:Name="DataTemplateStackPanel"

Orientation="Horizontal">

 <StackPanel MinWidth="180" Margin="5">

 <TextBlock x:Name="SymbolText" Text="{Binding

CompanySymbol}" Margin="-2,-13,0,0" Style="{StaticResource

PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="NameText" Text="{Binding Name}"

Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 <StackPanel MinWidth="170" Margin="5">

 <TextBlock x:Name="CloseText" Text="{Binding

Close}" Margin="-2,-13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="DateText" Text="{Binding Date}"

Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 <StackPanel Margin="5" MinWidth="80">

 <TextBlock Text="{Binding Change}" FontSize="28"

HorizontalAlignment="Right"></TextBlock>

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </StackPanel>

121

3. Now we will start working with the data. On the previous part, it was stated that Silverlight for

Windows Phone has an awesome databinding feature that can help us create a cleaner code.

We should take an advantage from this, combined with MVVM pattern. Insert a new class in

ViewModels folder, to do this, right click and select Add New Class. Name it

CompanyViewModel.

122

4. This class contains the view model for CompanyInfo which consist of a number of properties.

The contents of this class are:

Add InotifyPropertyChanged interface so that databinding can be done from two directions.

 private String companySymbol;

 public String CompanySymbol

 {

 get { return companySymbol; }

 set

 {

 if (value != companySymbol)

 {

 companySymbol = value;

 NotifyPropertyChanged("CompanySymbol");

 }

 }

 }

 private String name;

 public String Name

 {

 get { return name; }

 set {

 if (value != name)

 {

 name = value;

 NotifyPropertyChanged("Name");

 }

 }

 }

 private Boolean isSubcribed;

 public Boolean IsSubcribed

 {

 get { return isSubcribed; }

 set

 {

 if (value != isSubcribed)

 {

 isSubcribed = value;

 NotifyPropertyChanged("IsSubscribed");

 }

 }

 }

 private String date;

 public String Date

 {

 get { return date; }

 set

123

 {

 if (value != date)

 {

 date = value;

 NotifyPropertyChanged("Date");

 }

 }

 }

 private String close;

 public String Close

 {

 get { return close; }

 set

 {

 if (value != close)

 {

 close = value;

 NotifyPropertyChanged("Close");

 }

 }

 }

 private String change;

 public String Change

 {

 get { return change; }

 set

 {

 if (value != change)

 {

 change = value;

 NotifyPropertyChanged("Change");

 }

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

5. Add a class that will act as MainClass for ViewModel Company Info. Right click on the ViewModel

folder and add MainCompanyViewModel class. This class will contain the following two matters:

public MainCompanyViewModel()

124

 {

 // Insert code required on object creation below this point

 Items = new ObservableCollection<CompanyViewModel>();

 }

 public ObservableCollection<CompanyViewModel> Items { get; set; }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

This class contains an item collection of CompanyInfo type. This class will later be bound to a ListBox

in the main page.

6. Now we declare MainCompanyViewModel property in MainPage.xaml.cs class, and call for web

service using WebClient by entering URI: http://localhost/datasaham/CompanyInfo.xml

 MainCompanyViewModel stockHistoryViewModel = new MainCompanyViewModel();

 string uri = String.Format("http://localhost/datasaham/CompanyInfo.xml");

// Load data for the ViewModel Items

 private void MainPage_Loaded(object sender, RoutedEventArgs e)

 {

 WebClient wc = new WebClient();

 wc.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);

 wc.DownloadStringAsync(new Uri(uri));

 }

void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs

e)

 {

 if (e.Result != null)

 {

 stockHistoryViewModel = ParseStockHistoryFromXML(e.Result);

 if (DataContext == null)

 DataContext = stockHistoryViewModel;

 }

 }

7. The data consumption will return an XML. Therefore we need to do parsing using LINQ. Add the

System.Linq.Xml dll, right click on Reference and select Add Reference.

http://localhost/datasaham/CompanyInfo.xml

125

8. Add the following code. What this function does is fetch data from CompanyInfo, parse the data,

and store it in the related class.

public MainCompanyViewModel ParseStockHistoryFromXML(String result)

 {

 MainCompanyViewModel retVal = new MainCompanyViewModel();

 retVal.Items.Clear();

 XDocument xdoc = XDocument.Parse(result);

 int i = 0;

 foreach (var x in xdoc.Descendants("Info"))

 {

 i++;

 CompanyViewModel company = new CompanyViewModel()

 {

 CompanySymbol = x.Element("Symbol").Value,

 Name = x.Element("Name").Value,

 Close = x.Element("Close").Value,

 Date = x.Element("Date").Value,

 Change = x.Element("Change").Value

 };

 retVal.Items.Add(company);

 }

 return retVal;

126

 }

9. Press F5 to see how the application works.

In a moment, your application will display the data you need for stock trading :) As you can see,

with the use of databinding, displaying data is a really simple thing to do. Just set the data

context accordingly, and Silverlight will do the rest.

COMPANY STOCK DETAIL NAVIGATION

The company stock detail will be displayed when users select one of the companies in the list. For this

purpose we will pass parameters using Windows Phone navigation.

1. Prepare the CompanyDetailsViewModel class to store data to be displayed. Right click on the

ViewModel folder and select Add Class. Name it CompanyDetailsViewModel.cs

127

2. Insert the following code:

public class CompanyDetailsViewModel : CompanyViewModel, INotifyPropertyChanged

 {

 public CompanyDetailsViewModel()

 {

 }

 private String prevchange;

 public String PrevChange

 {

 get { return prevchange; }

 set

 {

 if (value != prevchange)

 {

 prevchange = value;

 NotifyPropertyChanged("PrevChange");

 }

 }

 }

 private String volume;

 public String Volume

 {

 get { return volume; }

 set

 {

128

 if (value != volume)

 {

 volume = value;

 NotifyPropertyChanged("Volume");

 }

 }

 }

 private String avgvolume;

 public String AvgVolume

 {

 get { return avgvolume; }

 set

 {

 if (value != avgvolume)

 {

 avgvolume = value;

 NotifyPropertyChanged("AvgVolume");

 }

 }

 }

 private String prevclose;

 public String Prevclose

 {

 get { return prevclose; }

 set

 {

 if (value != prevclose)

 {

 prevclose = value;

 NotifyPropertyChanged("PrevClose");

 }

 }

 }

 private String oneYearTarget;

 public String OneYearTarget

 {

 get { return oneYearTarget; }

 set

 {

 if (value != oneYearTarget)

 {

 oneYearTarget = value;

 NotifyPropertyChanged("OneYearTarget");

 }

 }

 }

 private String marketCapital;

 public String MarketCapital

 {

 get { return marketCapital; }

129

 set

 {

 if (value != marketCapital)

 {

 marketCapital = value;

 NotifyPropertyChanged("MarketCapital");

 }

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

This creates a container class that inherits several properties from CompanyViewModel class.

3. Open DetailsPage.xaml file. Change XAML markup in ContentPage so that it looks like this:

 <Grid x:Name="ContentPanel" Grid.Row="1">

 <ScrollViewer HorizontalScrollBarVisibility="Auto">

 <StackPanel Orientation="Vertical" >

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Company" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Name}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Last Trade" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Close}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Trade Date" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Date}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Change" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Change}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

130

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Change (%)" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding PrevChange}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Volume" Style="{StaticResource

PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Volume}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Avg Volume"

Style="{StaticResource PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding AvgVolume}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Prev Close"

Style="{StaticResource PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding Prevclose}" Style="{StaticResource

PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="1 Year Target"

Style="{StaticResource PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding OneYearTarget}"

Style="{StaticResource PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 <StackPanel Margin="0,5,0,5" Orientation="Horizontal">

 <TextBlock MinWidth="200" Text="Market Capital"

Style="{StaticResource PhoneTextLargeStyle}"></TextBlock>

 <TextBlock Text="{Binding MarketCapital}"

Style="{StaticResource PhoneTextLargeStyle}" Foreground="Gray"></TextBlock>

 </StackPanel>

 </StackPanel>

 </ScrollViewer>

 <!--<TextBlock x:Name="ContentText" Text="{Binding LineThree}"

TextWrapping="Wrap" Margin="24,10,24,24" Style="{StaticResource

PhoneTextTitle3Style}"/>-->

 </Grid>

 Don't forget to change the title for the page that we will bind into the selected company name.

<!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="PageTitle" Text="STOCK SCREEN" Style="{StaticResource

PhoneTextNormalStyle}"/>

 <TextBlock x:Name="ListTitle" Text="{Binding CompanySymbol}" Margin="9,-

7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

131

4. Open DetailsPage.xaml.cs file, then add the code below:

string selectedCompany = "";

 Declare the selected company.

// When page is navigated to, set data context to selected item in list

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 base.OnNavigatedTo(e);

 if (NavigationContext.QueryString.TryGetValue("selectedItem", out

selectedCompany))

 {

 WebClient wc = new WebClient();

 String uri = String.Format("http://localhost/datasaham/CompanyQuote-

{0}.xml", selectedCompany);

 wc.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);

 wc.DownloadStringAsync(new Uri(uri));

 }

 }

Calling for web service using WebClient. We fetch the parameter from the previous page using string

query on navigation. Here we use the navigation ability of Silverlight for Windows Phone.

 void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e)

 {

 if (e.Result != null)

 {

 CompanyDetailsViewModel compDetail =

ParseCompanyInfoFromXML(e.Result);

 DataContext = compDetail;

 LayoutRoot.Visibility = System.Windows.Visibility.Visible;

 }

 }

 public CompanyDetailsViewModel ParseCompanyInfoFromXML(String result)

 {

 CompanyDetailsViewModel companyDetail = null;

 XDocument xdoc = XDocument.Parse(result);

 try

 {

 companyDetail = new CompanyDetailsViewModel()

 {

 Name = xdoc.Element("Quotes").Element("Name").Value,

 AvgVolume =

xdoc.Element("Quotes").Element("AverageDailyVolume").Value,

 Change = xdoc.Element("Quotes").Element("Change").Value,

132

 Prevclose = xdoc.Element("Quotes").Element("PreviousClose").Value,

 Date = xdoc.Element("Quotes").Element("TradeDate").Value,

 MarketCapital =

xdoc.Element("Quotes").Element("MarketCapitalization").Value,

 OneYearTarget =

xdoc.Element("Quotes").Element("OneyrTargetPrice").Value,

 Volume = xdoc.Element("Quotes").Element("Volume").Value,

 PrevChange =

xdoc.Element("Quotes").Element("ChangeinPercent").Value,

 Close =

xdoc.Element("Quotes").Element("LastTradePriceOnly").Value,

 CompanySymbol = selectedCompany

 };

 return companyDetail;

 }

 catch (Exception e)

 {

 return null;

 }

 }

At this point, we parse the result data from the consumed web service using LINQ to XML. This

also sets the necessary data context.

5. Open MainPage.xaml.cs page. In function MainListBox_SelectionChanged add the following

code:

 // If selected index is -1 (no selection) do nothing

 if (MainListBox.SelectedIndex == -1)

 return;

 // Navigate to the new page

 NavigationService.Navigate(new Uri("/DetailsPage.xaml?selectedItem=" +

(MainListBox.SelectedItem as CompanyViewModel).CompanySymbol, UriKind.Relative));

 // Reset selected index to -1 (no selection)

 MainListBox.SelectedIndex = -1;

What this function does is fetch the company name which item was selected by user and pass it

to DetailsPage.xaml page.

6. Press F5 for result. Select one of the companies whose stock data we want to view.

133

PREPARING THE STOCK TRANSACTION SIGNAL PAGE

Next we will add a page to show transaction signals which will be the guide whether or not we should buy a

company's stock. Transaction signal used in this application is processed using MESA Sine-wave technique.

1. Add a Windows Phone Portrait Page and name it StockAnalysisPage.xaml

134

2. Configure application name, page title, and page content. Use the XAML code below:

<Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="STOCK SCREEN"

Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="signal" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <ListBox x:Name="MainListBox" ItemsSource="{Binding Items}"

SelectionChanged="MainListBox_SelectionChanged">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel x:Name="DataTemplateStackPanel"

Orientation="Horizontal">

 <StackPanel MinWidth="180" Margin="5">

 <TextBlock x:Name="SymbolText" Text="{Binding

CompanySymbol}" Margin="-2,-13,0,0" Style="{StaticResource

PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="NameText" Text="{Binding Name}"

Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

135

 </StackPanel>

 <StackPanel MinWidth="170" Margin="5">

 <TextBlock x:Name="CloseText" Text="{Binding Close}"

Margin="-2,-13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="DateText" Text="{Binding Date}"

Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 <StackPanel Margin="5" MinWidth="80">

 <TextBlock Text="{Binding Change}" FontSize="28"

HorizontalAlignment="Right"></TextBlock>

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </Grid>

 </Grid>

3. Create a class to contain company signal data we fetch so that it can be easily bound to UI. Since

the data structure stored is similar to company data in CompanyViewModel.cs class, then for

this purpose let's reuse the class. For the real deal this is of course not recommended.

4. Open StockAnalysisPage.xaml.cs and add the following code:

Declare MainViewModel to contain analysis data.

 public MainCompanyViewModel StockAnalysis;

 Fetch data using WebClient

void StockAnalysisPage_Loaded(object sender, RoutedEventArgs e)

136

 {

 if (StockAnalysis == null)

 {

 StockAnalysis = new MainCompanyViewModel();

 WebClient webClient = new WebClient();

 webClient.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(webClient_DownloadStringCompleted);

 webClient.DownloadStringAsync(new

Uri("http://localhost/datasaham/CompanySignal.xml"));

 }

 }

 void webClient_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

 {

 if (e.Result != null)

 {

 StockAnalysis = ParseStockAnalysisFromXML(e.Result);

 DataContext = StockAnalysis;

 }

 }

Parse the fetched data so that it matches the container class's structure. Use LINQ to XML.

 public MainCompanyViewModel ParseStockAnalysisFromXML(String result)

 {

 MainCompanyViewModel retVal = new MainCompanyViewModel();

 retVal.Items.Clear();

 XDocument xdoc = XDocument.Parse(result);

 int i = 0;

 foreach (var x in xdoc.Descendants("Info"))

 {

 i++;

 CompanyViewModel company = new CompanyViewModel()

 {

 CompanySymbol = x.Element("Symbol").Value,

 Name = x.Element("Name").Value,

 Close = x.Element("Signal").Value,

 Date = x.Element("Date").Value,

 Change = x.Element("Interval").Value

 };

 retVal.Items.Add(company);

 }

 return retVal;

 }

137

CREATING APPLICATION NAVIGATION USING APPLICATION BAR

Now we have two pages and therefore it is mandatory to have a means for navigating through pages. Let's

use our knowledge on Application Bar that we have discussed in previous section. Since we want an

Application Bar that is consistent in every page, we will use Global Application Bar.

1. Open App.xaml and add the code below:

 <!--Application Resources-->

 <Application.Resources>

 <shell:ApplicationBar x:Name="globalAppBar" x:Key="globalAppBar"

IsVisible="True" IsMenuEnabled="True" Opacity="1">

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem x:Name="stockHistoryItem"

Click="stockHistoryItem_Click" Text="Stock History"></shell:ApplicationBarMenuItem>

 <shell:ApplicationBarMenuItem x:Name="stockAnalysisItem" Text="Stock

Analysis" Click="stockAnalysisItem_Click"></shell:ApplicationBarMenuItem>

 <shell:ApplicationBarMenuItem x:Name="subscribtionItem"

Click="subscribtionItem_Click" Text="Subscription"></shell:ApplicationBarMenuItem>

 </shell:ApplicationBar.MenuItems>

 </shell:ApplicationBar>

 </Application.Resources>

2. Add an event handler in App.xaml.cs for each menu bar.

 private void subscribtionItem_Click(object sender, EventArgs e)

 {

 this.RootFrame.Navigate(new Uri("/Subscription.xaml", UriKind.Relative));

 }

 private void stockHistoryItem_Click(object sender, EventArgs e)

 {

 this.RootFrame.Navigate(new Uri("/MainPage.xaml", UriKind.Relative));

 }

 private void stockAnalysisItem_Click(object sender, EventArgs e)

 {

 this.RootFrame.Navigate(new Uri("/StockAnalysisPage.xaml",

UriKind.Relative));

 }

3. Open MainPage.xaml and StockAnalysisPage.xaml. Add the following code to both:

<phone:PhoneApplicationPage

 ...

 shell:SystemTray.IsVisible="True"

 ApplicationBar="{StaticResource globalAppBar}">

138

4. Press F5 for results.

STOCK TRANSACTION DETAIL PAGE

1. Add a new page, right click on the project, select Add New Page and name it

DetailStockAnalysisPage.xaml.

139

2. Modify the XAML code so that it looks like this:

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="STOCK SCREEN"

Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="{Binding CompanyName}" Margin="9,-

7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1">

 <Grid.Projection>

 <PlaneProjection></PlaneProjection>

 </Grid.Projection>

 <StackPanel Orientation="Vertical">

 <StackPanel Orientation="Horizontal" Margin="5,20,5,20">

 <TextBlock x:Name="SymbolTitle" Text="Signal Type" MinWidth="350"

Margin="-3,-8,0,0" Style="{StaticResource PhoneTextLargeStyle}"/>

 <TextBlock x:Name="DateTitle" HorizontalAlignment="Right" Text="Date"

Margin="-3,-8,0,0" Style="{StaticResource PhoneTextLargeStyle}"/>

 </StackPanel>

 <ListBox x:Name="MainListBox" ItemsSource="{Binding Items}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel x:Name="DataTemplateStackPanel"

Orientation="Horizontal">

 <TextBlock MinWidth="350" x:Name="SymbolText"

Text="{Binding Type}" Margin="5,5,0,5" Style="{StaticResource PhoneTextLargeStyle}"/>

 <TextBlock x:Name="NameText" Text="{Binding Date}"

Margin="0,5,0,5" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </StackPanel>

 </Grid>

 </Grid>

140

3. Prepare a ViewModel to display the company transaction data of a company. Right click on

project and select Add Class, name it SignalViewModel.cs. Type the code below:

public class SignalViewModel : INotifyPropertyChanged

 {

 private String type;

 public String Type

 {

 get { return type; }

 set

 {

 if (value != type)

 {

 type = value;

 NotifyPropertyChanged("Type");

 }

 }

 }

 private String date;

 public String Date

 {

 get { return date; }

 set

 {

 if (value != date)

 {

 date = value;

 NotifyPropertyChanged("Date");

 }

 }

141

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

4. For SignalModel main class, create a new class. Right click on project, select Add Class, and

name it MainSignalViewModel.cs. Insert the following code:

 public class MainSignalViewModel : INotifyPropertyChanged

 {

 public ObservableCollection<SignalViewModel> Items { get; set; }

 public String CompanyName { get; set; }

 public MainSignalViewModel()

 {

 Items = new ObservableCollection<SignalViewModel>();

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

5. Open DetailStockAnalysisPage.xaml page and modify the code:

Declare a variable to store parameters from the previous page

string selectedCompany = "";

When the application is navigated to the said page, it will call a web service. The parameters

for the web service are retrieved by doing a string query on the previous page.

// When page is navigated to, set data context to selected item in list

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 base.OnNavigatedTo(e);

142

 if (NavigationContext.QueryString.TryGetValue("selectedItem", out

selectedCompany))

 {

 WebClient wc = new WebClient();

 String uri = String.Format("http://localhost/datasaham/CompanySignal-

{0}.xml", selectedCompany);

 wc.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);

 wc.DownloadStringAsync(new Uri(uri));

 }

 }

 void wc_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

 {

 if (e.Result != null)

 {

 this.DataContext = ParseDetailStockAnalysisFromXML(e.Result,

selectedCompany);

 }

 }

 Then parse the fetched data using LINQ to XML.

public MainSignalViewModel ParseDetailStockAnalysisFromXML(String result, String

symbol)

 {

 MainSignalViewModel retVal = new MainSignalViewModel() { CompanyName =

symbol };

 XDocument xdoc = XDocument.Parse(result);

 int i = 0;

 foreach (var x in xdoc.Descendants("Signal"))

 {

 i++;

 SignalViewModel company = new SignalViewModel()

 {

 Type = x.Element("Type").Value,

 Date = x.Element("Date").Value

 };

 retVal.Items.Add(company);

 }

 return retVal;

 }

143

6. Open StockAnalysisPage.xaml page and add the code below in

MainListBox_SelectionChanged event handler:

 private void MainListBox_SelectionChanged(object sender, SelectionChangedEventArgs

e)

 {

 //// Navigate to the new page

 NavigationService.Navigate(new

Uri("/DetailStockAnalysisPage.xaml?selectedItem=" + (MainListBox.SelectedItem as

CompanyViewModel).CompanySymbol, UriKind.Relative));

 // Reset selected index to -1 (no selection)

 MainListBox.SelectedIndex = -1;

 }

7. Press F5 for results. You can select a company from the list and see the analysis for its stock.

ADDING COMPANY LIST

An interesting feature in Windows Phone (one which will not be discussed in this e-book) is the ability to do

Push Notification using Microsoft service, Push Notification Server. Using this push, developers can send new

data to an application without forcing the application to do constant polling to data provider. This means

that without having to be active, application can still fetch the newest data.

This scenario fits perfectly for application like stock screen. Assume this application uses the service, then we

will create a mechanism how users can select companies to subscribe, so that they will receive information

actually from the selected companies.

144

1. Insert a page, right click on project, select Add Page -> Windows Phone Portrait Page and name

it Subscription.xaml.

2. Add the following code so that the page layout will look like the figure below.

<phone:PhoneApplicationPage

 x:Class="StockScreenApps.Subscription"

....

 ApplicationBar="{StaticResource globalAppBar}">

 <phone:PhoneApplicationPage.Resources>

 <DataTemplate x:Key="subscription">

 <StackPanel x:Name="DataTemplateStackPanel" Orientation="Horizontal">

 <Image x:Name="ItemImage"

Source="/StockScreenApps;component/appbar.delete.rest.png" Height="43" Width="43"

VerticalAlignment="Top" Margin="10,0,20,0"

MouseLeftButtonDown="ItemImage_MouseLeftButtonDown"/>

 <StackPanel>

 <TextBlock x:Name="CompanyText" Text="{Binding Name}" Margin="-2,-

13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="CompanySymbolText" Text="{Binding

CompanySymbol}" Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 <DataTemplate x:Key="unsubscription">

 <StackPanel x:Name="DataTemplateStackPanel" Orientation="Horizontal">

 <Image x:Name="ItemImage"

Source="/StockScreenApps;component/appbar.add.rest.png" Height="43" Width="43"

VerticalAlignment="Top" MouseLeftButtonDown="AddImage_MouseLeftButtonDown"

Margin="10,0,20,0"/>

 <StackPanel>

145

 <TextBlock x:Name="CompanyText" Text="{Binding Name}" Margin="-2,-

13,0,0" Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock x:Name="CompanySymbolText" Text="{Binding

CompanySymbol}" Margin="0,-6,0,3" Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </phone:PhoneApplicationPage.Resources>

 <!--LayoutRoot is the root grid where all page content is placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="STOCK SCREEN"

Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="company list" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <StackPanel Orientation="Vertical">

 <StackPanel Orientation="Horizontal">

 <Button Content="Add"></Button>

 <Button Content="Refresh" Margin="230,0,0,0"></Button>

 </StackPanel>

 <ListBox Margin="0,10,0,0" x:Name="MainListBox"

SelectionMode="Multiple" ItemsSource="{Binding Items}">

 </ListBox>

 </StackPanel>

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

What you should notice from the code above is the declaration of two different data templates. The

first data template is used to displayed the list of subscribed companies, along with a delete button

to remove a company from the list. The second template is used to display available companies

along with an add (+) button to add the company to our subscription list.

146

3. Add the resource icon that will be used, obtainable from C:\Program Files\Microsoft

SDKs\Windows Phone\v7.0\Icons. Do this by right clicking on project, select Add Existing Item

and find app.bar.delete.rest.png icon and app.bar.add.rest.png from the said folder.

4. Open Subscription.xaml.cs. Add the following line of codes:

Declare a variable to contain the list of subscribed companies and non-subscribed companies.

 MainCompanyViewModel subscribtionlist;

 MainCompanyViewModel unsubscribtionlist;

On Loaded() event handler add a function to fetch data from available services. Then parse the

return value.

public Subscription()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Subscription_Loaded);

 }

147

 void Subscription_Loaded(object sender, RoutedEventArgs e)

 {

 //set item template

 MainListBox.ItemTemplate =

(DataTemplate)this.Resources["subscription"];

 //get data

 WebClient wc = new WebClient();

 wc.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);

 wc.DownloadStringAsync(new

Uri("http://localhost/datasaham/SubcribtionList.xml"));

 WebClient wc2 = new WebClient();

 wc2.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(wc2_DownloadStringCompleted);

 wc2.DownloadStringAsync(new

Uri("http://localhost/datasaham/UnsubcriptionList.xml"));

 }

 void wc_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

 {

 if (e.Result != null)

 {

 subscribtionlist = ParseFromXML(e.Result);

 DataContext = subscribtionlist;

 }

 }

Use LINQ to XML.

 public MainCompanyViewModel ParseFromXML(String result)

 {

 MainCompanyViewModel retVal = new MainCompanyViewModel();

 retVal.Items.Clear();

 XDocument xdoc = XDocument.Parse(result);

 foreach (var x in xdoc.Descendants("Subscription"))

 {

 CompanyViewModel company = new CompanyViewModel()

 {

 CompanySymbol = x.Element("Symbol").Value,

 Name = x.Element("Name").Value

 };

 retVal.Items.Add(company);

 }

148

 return retVal;

 }

5. Double click the Add button and add an event handler. When this button is pressed, the screen

will display a list of companies the user has not subscribed to.

bool AddMode;

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 if (!AddMode)

 {

 AddMode = true;

 (sender as Button).Content = "OK!";

 MainListBox.ItemTemplate =

(DataTemplate)this.Resources["unsubscription"];

 //change datacontext

 if (unsubscribtionlist == null)

 {

 }

 else

 {

 DataContext = unsubscribtionlist;

 }

 }

 else

 {

 AddMode = false;

 (sender as Button).Content = "Add";

 MainListBox.ItemTemplate =

(DataTemplate)this.Resources["subscription"];

 DataContext = subscribtionlist;

 }

 }

 void wc2_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

 {

 if (e.Result != null)

 {

 unsubscribtionlist = new MainCompanyViewModel();

 unsubscribtionlist = ParseFromXML(e.Result);

 }

 }

149

6. Now add a function to handle deletion/addition to the list. We add a handler to handle

MainListBox_SelectionChanged event.

bool isDelete = false;

 bool isAdd = false;

 private void MainListBox_SelectionChanged(object sender,

SelectionChangedEventArgs e)

 {

 if (isDelete)

 {

 string symbol = ((sender as ListBox).SelectedItem as

CompanyViewModel).CompanySymbol;

 MessageBoxResult result = MessageBox.Show(((sender as

ListBox).SelectedItem as CompanyViewModel).Name,"delete",MessageBoxButton.OKCancel);

 isDelete = false;

 if (result == MessageBoxResult.OK)

 {

 CompanyViewModel temp = subscribtionlist.GetCompany(symbol);

 CompanyViewModel company = new CompanyViewModel()

 {

 CompanySymbol = temp.CompanySymbol,

 Name = temp.Name

 };

 unsubscribtionlist.Items.Add(company);

 subscribtionlist.Items.Remove(temp);

 }

 }

 else if (isAdd)

 {

 string symbol = ((sender as ListBox).SelectedItem as

CompanyViewModel).CompanySymbol;

 MessageBoxResult result = MessageBox.Show(((sender as

ListBox).SelectedItem as CompanyViewModel).Name,"add

company",MessageBoxButton.OKCancel);

 isAdd = false;

 if (result == MessageBoxResult.OK)

 {

 CompanyViewModel temp = unsubscribtionlist.GetCompany(symbol);

 CompanyViewModel company = new CompanyViewModel()

 {

 CompanySymbol = temp.CompanySymbol,

 Name = temp.Name

 };

 subscribtionlist.Items.Add(company);

 unsubscribtionlist.Items.Remove(temp);

 }

 }

 }

150

 private void ItemImage_MouseLeftButtonDown(object sender, MouseButtonEventArgs

e)

 {

 isDelete = true;

 }

 private void AddImage_MouseLeftButtonDown(object sender, MouseButtonEventArgs

e)

 {

 isAdd = true;

 }

Note: The code above is not the only solution to handle deletion and addition of data. Let's just

say “it works” but it isn't necessarily the best solution. At the very least it is enough for current

purpose. You should consider not using a MessageBox in the real application.

7. Press F5 and see how the application works. Press the delete icon to remove a company from

the list. To add a company, click Add and select one of the available company. We will feel the

advantage of using MVVM schema and INotifyPropertyChanged, with which we can delete an

item in an observable collection and the application's interface will automatically updated to the

latest condition.

151

iv

CLOSING

Finally we have reached the end of this e-book :) Such a fun journey of exploration, don't you agree? We

have learned a lot of things about Windows Phone, Silverlight platform for Windows Phone application

development, specific features on Silverlight for Windows Phone, up to practicing by developing two simple

applications. One thing for sure, the interface design aspect is not discussed too far in this e-book because I

personally don't have an expertise in the subject.

Windows Phone is a very broad platform. There are still so many topics yet to be discussed in this e-book,

such as:

 Push Notification

 Manipulation (Multi-touch)

 Bing Maps for Windows Phone

 Launcher and Chooser

 ... and many more

Reference list in this e-book can be used to study about said topics. Also, every source code related to this

book, including the two simple applications, can be downloaded for free in Silverlight for Windows Phone

homepage: http://slforwp7.codeplex.com/releases .

I especially want to thank Halida Astatin, for helping me translate this ebook, to provide easy to read and

such a convenient experience for one who use English as the main language.

Lastly, I humbly apologize for any typing or layout mistakes. Enjoy your study :)

Regards,

Puja Pramudya
puja.pramudya@gmail.com
@poedja_p

http://slforwp7.codeplex.com/releases
http://www.facebook.com/home.php?#!/halida.astatin
mailto:puja.pramudya@gmail.com

5

REFERENCES

[1] Windows Phone in MSDN

[2] Windows Phone 7 Jump Start Training

[3] Windows Phone 7 in 7

[4] http://i.msdn.microsoft.com/dynimg/IC430124.png

[5] http://i.msdn.microsoft.com/dynimg/IC425813.jpg

[6] http://i.msdn.microsoft.com/dynimg/IC425811.jpg

http://msdn.microsoft.com/en-us/library/ff402535%28v=VS.92%29.aspx
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2010/08/17/windows-phone-7-jump-start-training.aspx
http://www.msdev.com/Directory/SeriesDescription.aspx?CourseId=158
http://i.msdn.microsoft.com/dynimg/IC430124.png
http://i.msdn.microsoft.com/dynimg/IC425813.jpg
http://i.msdn.microsoft.com/dynimg/IC425811.jpg

	Foreword
	What We Can Learn
	Target Reader

	Contents
	PART I OVERVIEW
	Windows Phone
	Silverlight and Windows Phone
	Application Life Cycle
	Security

	Development Requirements
	System Requirements
	Windows Phone Emulator Requirements

	PART II LEARN
	You Had Me At “Hello World”
	Navigations on Windows Phone
	Navigating Between Pages
	Passing Parameters Between Pages
	Pivot and Panorama
	Panorama
	Pivot

	Dealing with Page Orientations
	Application Bar
	Global Application Bar
	Local Application Bar
	Local Application Bar (Programmatic Approach)
	Inserting Event Handler

	Web Service Consumption
	Access via Generated Class
	Creating Web Services
	Adding Web Service Reference
	Consuming Web Service

	Using Standard HTTP Request

	Working with Data
	Using Isolated Storage
	Isolated Storage for Files
	IsolatedStorage for Application Setting

	Soft Iinput Panel Layout
	Getting to Know Web Browser
	Globalization & Localization
	Globalization
	Localization

	Location Based System
	Getting to Know Accelerometer
	Bing Maps Control for Windows Phone
	Registering Bing Maps Account
	Using Bing Maps Control

	PART III PRACTICE
	#1 - Unit Converter
	Preparing the Main Interface
	Converting
	Adding Culture List
	Saving User Preferences

	#2 – Stock Screen
	Preparing Data for Company Stock Values
	Preparing Company Stock List Page
	Company Stock Detail Navigation
	Preparing the Stock Transaction Signal Page
	Creating Application Navigation using Application Bar
	Stock Transaction Detail Page
	Adding Company List

	CLOSING
	REFERENCES

